-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathload_nodule_data.py
209 lines (185 loc) · 9.9 KB
/
load_nodule_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
'''
Encoding Visual Attributes in Capsules for Explainable Medical Diagnoses (X-Caps)
Original Paper by Rodney LaLonde, Drew Torigian, and Ulas Bagci (https://arxiv.org/abs/1909.05926)
Code written by: Rodney LaLonde
If you use significant portions of this code or the ideas from our paper, please cite it :)
If you have any questions, please email me at lalonde@knights.ucf.edu.
This file contains all the functions related to loading the nodule data.
'''
import os
from glob import glob
import csv
from PIL import Image
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from tqdm import tqdm, trange
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.ioff()
from utils import safe_mkdir
debug = False
def load_data(root, split=0, k_folds=5, val_split=0.2):
fig_path = os.path.join(root, 'figs')
safe_mkdir(fig_path)
def _load_helper(f_list):
imgs = np.empty(len(f_list), dtype=np.object)
masks = np.empty(len(f_list), dtype=np.object)
labels = np.zeros((len(f_list), 27), dtype=np.float32)
for i, nod in enumerate(tqdm(f_list)):
img_path_list = sorted(glob(os.path.join(root, nod[0], '???.tif')))
mask_path_list = sorted(glob(os.path.join(root, nod[0], 'gt_???.tif')))
assert len(img_path_list) == len(mask_path_list), 'Found different numbers of images and masks at ' \
'{}'.format(os.path.join(root, nod[0]))
img_list = []; mask_list = []
for j in range(len(img_path_list)):
img_list.append(np.asarray(Image.open(img_path_list[j]), dtype=np.int16))
mask_list.append(np.asarray(Image.open(mask_path_list[j]), dtype=np.uint8))
imgs[i] = np.rollaxis(np.asarray(img_list), 0, 3)
masks[i] = np.rollaxis(np.asarray(mask_list), 0, 3)
labels[i, :] = np.asarray(nod[1:], dtype=np.float32)
try:
img = imgs[i]
mask = masks[i]
label = 'Sub: {} ISt: {} Cal: {} Sph: {} Mar: {} Lob: {} Spi: {} Tex: {} Mal: {}' \
''.format(labels[i][0], labels[i][1], labels[i][2], labels[i][3], labels[i][4],
labels[i][5], labels[i][6], labels[i][7], labels[i][8])
f, ax = plt.subplots(1, 1, figsize=(15, 15))
ax.imshow(img[:, :, img.shape[2] // 2], cmap='gray')
ax.imshow(mask[:, :, img.shape[2] // 2], alpha=0.2, cmap='Reds')
ax.set_title('{}'.format(label), fontsize=20)
ax.axis('off')
plt.savefig(os.path.join(fig_path, nod[0][8:].replace("/", "_").replace("\\", "_") + '_m.png'),
format='png', bbox_inches='tight')
plt.close()
f, ax = plt.subplots(1, 1, figsize=(15, 15))
ax.imshow(img[:, :, img.shape[2] // 2], cmap='gray')
ax.set_title('{}'.format(label), fontsize=20)
ax.axis('off')
plt.savefig(os.path.join(fig_path, nod[0][8:].replace("/", "_").replace("\\", "_") + '_i.png'),
format='png', bbox_inches='tight')
plt.close()
except Exception as e:
print('\n' + '-' * 100)
print('Error creating qualitative figure for {}'.format(nod[0]))
print(e)
print('-' * 100 + '\n')
return imgs, masks, labels
# Main functionality of loading and spliting the data
def _load_data():
outfile = os.path.join(root, 'np_data', 'split_{:02d}.npz'.format(split))
try:
print('Loading np_files for split {} of LIDC-IDRI dataset.'.format(split))
npzfiles = np.load(outfile, allow_pickle=True, encoding='bytes')
return npzfiles['train_imgs'], npzfiles['train_masks'], npzfiles['train_labels'], \
npzfiles['val_imgs'], npzfiles['val_masks'], npzfiles['val_labels'], \
npzfiles['test_imgs'], npzfiles['test_masks'], npzfiles['test_labels']
except Exception as e:
print('Unable to load numpy files. Loading from scratch instead.', e)
with open(os.path.join(root, 'file_lists', 'train_split_{:02d}.csv'.format(split)), 'r') as f:
reader = csv.reader(f)
training_list = list(reader)
with open(os.path.join(root, 'file_lists', 'test_split_{:02d}.csv'.format(split)), 'r') as f:
reader = csv.reader(f)
test_list = list(reader)
print('Found training file lists, loading images and labels as numpy arrays.')
print('Loading training images/labels.')
train_val_imgs, train_val_masks, train_val_labels = _load_helper(training_list)
print('Loading testing images/labels.')
test_imgs, test_masks, test_labels = _load_helper(test_list)
X_train, X_val, y_train, y_val = train_test_split(np.stack((train_val_imgs, train_val_masks), axis=-1),
train_val_labels, test_size=val_split,
random_state=12, stratify=train_val_labels[:,8])
train_imgs, train_masks = np.split(X_train, 2, axis=-1)
val_imgs, val_masks = np.split(X_val, 2, axis=-1)
print('Finished loading files as numpy arrays. Saving arrays to avoid this in the future.')
safe_mkdir(os.path.dirname(outfile))
np.savez(outfile, train_imgs=np.squeeze(train_imgs), train_masks=np.squeeze(train_masks), train_labels=y_train,
val_imgs=np.squeeze(val_imgs), val_masks=np.squeeze(val_masks), val_labels=y_val,
test_imgs=test_imgs, test_masks=test_masks, test_labels=test_labels)
return np.squeeze(train_imgs), np.squeeze(train_masks), y_train, \
np.squeeze(val_imgs), np.squeeze(val_masks), y_val, test_imgs, test_masks, test_labels
# Try-catch to handle calling split data before load only if files are not found.
try:
Tr_i, Tr_m, Tr_l, Va_i, Va_m, Va_l, Te_i, Te_m, Te_l = _load_data()
return Tr_i, Tr_m, Tr_l, Va_i, Va_m, Va_l, Te_i, Te_m, Te_l
except Exception as e:
# Create the training and test splits if not found
print('Training lists not found. Creating {}-fold cross-validation training/testing lists'.format(k_folds))
split_data(root, num_splits=k_folds)
try:
Tr_i, Tr_m, Tr_l, Va_i, Va_m, Va_l, Te_i, Te_m, Te_l = _load_data()
return Tr_i, Tr_m, Tr_l, Va_i, Va_m, Va_l, Te_i, Te_m, Te_l
except Exception as e:
print(e)
print('Failed to load data, see load_data in load_nodule_data.py')
exit(1)
def split_data(root_path, num_splits=4):
with open(os.path.join(root_path, 'file_lists', 'master_nodule_list.csv'), 'r') as f:
reader = csv.reader(f)
img_list = np.asarray(list(reader))
labels_list = []
indices = [0]
nodule_list = []
mal_score_list = []
mal_scores = []
curr_nodule = os.path.dirname(img_list[0][0])
for i, img_label in enumerate(img_list):
if os.path.dirname(img_label[0]) != curr_nodule:
nodule_list.append(curr_nodule)
mal_score_list.append(np.rint(np.mean(mal_scores)))
indices.append(i)
mal_scores = []
curr_nodule = os.path.dirname(img_label[0])
split_name = os.path.basename(img_label[0]).split('_')
mal_scores.append(int(split_name[-1][-1]))
labels_list.append([int(n[-1]) for n in split_name[1:]])
outdir = os.path.join(root_path, 'file_lists')
safe_mkdir(outdir)
skf = StratifiedKFold(n_splits=num_splits, shuffle=True, random_state=12)
n = 0
for train_index, test_index in skf.split(nodule_list, mal_score_list):
with open(os.path.join(outdir,'train_split_{:02d}.csv'.format(n)), 'w') as csvfile:
writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
for i in train_index:
for j in range(indices[i], indices[i+1]):
writer.writerow([img_list[j][0].split(root_path)[1][1:]] + labels_list[j] + list(img_list[j][1:]))
with open(os.path.join(outdir,'test_split_{:02d}.csv'.format(n)), 'w') as csvfile:
writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
for i in test_index:
for j in range(indices[i], indices[i+1]):
writer.writerow([img_list[j][0].split(root_path)[1][1:]] + labels_list[j] + list(img_list[j][1:]))
n += 1
def resize_data(imgs, masks, labels, out_dims):
img_list = []; mask_list = []; label_list = []
for i in trange(len(imgs)):
for j in range(imgs[i].shape[2]):
img = Image.fromarray(imgs[i][:, :, j])
mask = Image.fromarray(masks[i][:, :, j])
out_img = img.resize(out_dims)
out_mask = mask.resize(out_dims)
img_list.append(np.asarray(out_img, dtype=np.int16))
mask_list.append(np.asarray(out_mask, dtype=np.uint8))
label_list.append(labels[i])
return np.asarray(img_list), np.asarray(mask_list), np.asarray(label_list)
def get_pseudo_label(x, mu, sig):
sig[sig < .05] = .05
g = (1. / (np.sqrt(2. * np.pi) * sig) * \
np.exp(-np.power((np.repeat(np.expand_dims(np.asarray(x), axis=-1), mu.shape[0], axis=-1) - mu)
/ sig, 2.) / 2))
return (g / np.sum(g, axis=0)).T
def normalize_img(x):
CT_MIN = -1024; CT_MAX = 3072
x[x < CT_MIN] = CT_MIN
x[x > CT_MAX] = CT_MAX
x -= CT_MIN
x /= (CT_MAX - CT_MIN)
return x
def recover_img(x):
CT_MIN = -1024; CT_MAX = 3072
x *= (CT_MAX - CT_MIN)
x += CT_MIN
x[x < CT_MIN] = CT_MIN
x[x > CT_MAX] = CT_MAX
return x