-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcurriculum.py
96 lines (78 loc) · 4.23 KB
/
curriculum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from garage.torch.policies import GaussianMLPPolicy
from garage.torch.value_functions import GaussianMLPValueFunction
import torch
from garage import wrap_experiment
from garage.envs import GymEnv
from garage.experiment.deterministic import set_seed
from surprise.SurpriseFunctions import SurpriseWorkerFactory, CustomSampler, SurpriseWorker
from algo.StudentTeacherAlgo_Diff import Curriculum_Diff as Curriculum
from surprise.trainer_diff import Trainer
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='halfcheetah', type=str, help='name of config file')
parser.add_argument('--seed', default=1, type=int, help='seed')
args = parser.parse_args()
if args.config == 'halfcheetah':
from config.halfcheetah_config import *
elif args.config == 'hopper':
from config.hopper_config import *
elif args.config == 'cartpole':
raise ValueError("Invalid config")
elif args.config == 'mountaincar':
from config.mountaincar_config import *
else:
raise ValueError("Invalid config")
########################################################################################
# If you choose snapshot_mode='all', you will save every iteration of the experiment.
@wrap_experiment(log_dir = LOG_DIR + 'curriculum', archive_launch_repo=False)
def curriculum_student_teacher(ctxt=None, seed=1):
"""
Student-teacher setup for auto-curricula using both teacher and student surprise
"""
set_seed(seed)
teacher_env = GymEnv(TEACHER_ENV)
student_env = GymEnv(STUDENT_ENV)
trainer = Trainer(ctxt)
teacher_policy = GaussianMLPPolicy(teacher_env.spec,
hidden_sizes=[128, 128],
hidden_nonlinearity=torch.tanh,
output_nonlinearity=None)
student_policy = GaussianMLPPolicy(student_env.spec,
hidden_sizes=[64, 64],
hidden_nonlinearity=torch.tanh,
output_nonlinearity=None)
value_function = GaussianMLPValueFunction(env_spec=teacher_env.spec,
hidden_sizes=(128, 128),
hidden_nonlinearity=torch.tanh,
output_nonlinearity=None)
student_sampler = CustomSampler(envs = student_env,
agents = student_policy,
worker_factory = SurpriseWorkerFactory,
max_episode_length = MAX_EPISODE_LENGTH)
surprise = {"surprise": CURRICULUM_WORKER_ARGS ["surprise"],
"student": student_policy,
"eta0": CURRICULUM_WORKER_ARGS ["eta0"],
"student_eta0": CURRICULUM_WORKER_ARGS ["student_eta0"],
"replay": student_sampler,
"regressor_hidden_size": CURRICULUM_WORKER_ARGS ["regressor_hidden_size"],
"regressor_epoch": CURRICULUM_WORKER_ARGS ["regressor_epoch"],
"regressor_batch_size": CURRICULUM_WORKER_ARGS ["regressor_batch_size"],
"state_dim": teacher_env.spec.observation_space.flat_dim,
"action_dim": teacher_env.spec.action_space.flat_dim}
teacher_sampler = CustomSampler(envs = teacher_env,
agents = teacher_policy,
worker_factory = SurpriseWorkerFactory,
worker_class = SurpriseWorker,
worker_args = surprise,
max_episode_length = MAX_EPISODE_LENGTH)
algo = Curriculum(teacher_env_spec = teacher_env.spec,
student_env_spec = student_env.spec,
teacher_policy = teacher_policy,
teacher_value_function = value_function,
student_policy = student_policy,
teacher_sampler = teacher_sampler,
student_sampler = student_sampler,
batch_size = BATCH_SIZE )
trainer.setup( algo = algo, env = teacher_env, student_env=student_env)
trainer.train(n_epochs = N_EPOCHS, batch_size = BATCH_SIZE , store_episodes=True)
curriculum_student_teacher(seed = args.seed)