-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_baseline_task2.py
317 lines (275 loc) · 13.9 KB
/
train_baseline_task2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import sys, os
import time
import json
import pickle
import argparse
from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
from torch.optim import Adam
import torch.utils.data as utils
from models.SELDNet import Seldnet_vanilla, Seldnet_augmented
from utility_functions import load_model, save_model
'''
Train our baseline model for the Task2 of the L3DAS21 challenge.
This script saves the best model checkpoint, as well as a dict containing
the results (loss and history). To evaluate the performance of the trained model
according to the challenge metrics, please use evaluate_baseline_task2.py.
Command line arguments define the model parameters, the dataset to use and
where to save the obtained results.
'''
def evaluate(model, device, criterion_sed, criterion_doa, dataloader):
#compute loss without backprop
model.eval()
test_loss = 0.
with tqdm(total=len(dataloader) // args.batch_size) as pbar, torch.no_grad():
for example_num, (x, target) in enumerate(dataloader):
target = target.to(device)
x = x.to(device)
t = time.time()
# Compute loss for each instrument/model
sed, doa = model(x)
loss = seld_loss(x, target, model, criterion_sed, criterion_doa)
test_loss += (1. / float(example_num + 1)) * (loss - test_loss)
pbar.set_description("Current loss: {:.4f}".format(test_loss))
pbar.update(1)
return test_loss
def seld_loss(x, target, model, criterion_sed, criterion_doa):
'''
compute seld loss as weighted sum of sed (BCE) and doa (MSE) losses
'''
#divide labels into sed and doa (which are joint from the preprocessing)
target_sed = target[:,:,:args.output_classes*args.class_overlaps]
target_doa = target[:,:,args.output_classes*args.class_overlaps:]
#compute loss
sed, doa = model(x)
#print ('SDWINGWIEFGNWIJFNWEIJFN', sed.shape, doa.shape, target_sed.shape, target_doa.shape)
sed = torch.flatten(sed, start_dim=1)
doa = torch.flatten(doa, start_dim=1)
target_sed = torch.flatten(target_sed, start_dim=1)
target_doa = torch.flatten(target_doa, start_dim=1)
loss_sed = criterion_sed(sed, target_sed) * args.sed_loss_weight
loss_doa = criterion_doa(doa, target_doa) * args.doa_loss_weight
return loss_sed + loss_doa
def main(args):
if args.use_cuda:
device = 'cuda:' + str(args.gpu_id)
else:
device = 'cpu'
if args.fixed_seed:
seed = 1
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
#LOAD DATASET
print ('\nLoading dataset')
with open(args.training_predictors_path, 'rb') as f:
training_predictors = pickle.load(f)
with open(args.training_target_path, 'rb') as f:
training_target = pickle.load(f)
with open(args.validation_predictors_path, 'rb') as f:
validation_predictors = pickle.load(f)
with open(args.validation_target_path, 'rb') as f:
validation_target = pickle.load(f)
with open(args.test_predictors_path, 'rb') as f:
test_predictors = pickle.load(f)
with open(args.test_target_path, 'rb') as f:
test_target = pickle.load(f)
training_predictors = np.array(training_predictors)
training_target = np.array(training_target)
validation_predictors = np.array(validation_predictors)
validation_target = np.array(validation_target)
test_predictors = np.array(test_predictors)
test_target = np.array(test_target)
print ('\nShapes:')
print ('Training predictors: ', training_predictors.shape)
print ('Validation predictors: ', validation_predictors.shape)
print ('Test predictors: ', test_predictors.shape)
print ('Training target: ', training_target.shape)
print ('Validation target: ', validation_target.shape)
print ('Test target: ', test_target.shape)
features_dim = int(test_target.shape[-2] * test_target.shape[-1])
#convert to tensor
training_predictors = torch.tensor(training_predictors).float()
validation_predictors = torch.tensor(validation_predictors).float()
test_predictors = torch.tensor(test_predictors).float()
training_target = torch.tensor(training_target).float()
validation_target = torch.tensor(validation_target).float()
test_target = torch.tensor(test_target).float()
#build dataset from tensors
tr_dataset = utils.TensorDataset(training_predictors, training_target)
val_dataset = utils.TensorDataset(validation_predictors, validation_target)
test_dataset = utils.TensorDataset(test_predictors, test_target)
#build data loader from dataset
tr_data = utils.DataLoader(tr_dataset, args.batch_size, shuffle=True, pin_memory=True)
val_data = utils.DataLoader(val_dataset, args.batch_size, shuffle=False, pin_memory=True)
test_data = utils.DataLoader(test_dataset, args.batch_size, shuffle=False, pin_memory=True)
#LOAD MODEL
if args.architecture == 'seldnet_vanilla':
n_time_frames = test_predictors.shape[-1]
model = Seldnet_vanilla(time_dim=n_time_frames, freq_dim=args.freq_dim, input_channels=args.input_channels,
output_classes=args.output_classes, pool_size=args.pool_size,
pool_time=args.pool_time, rnn_size=args.rnn_size, n_rnn=args.n_rnn,
fc_size=args.fc_size, dropout_perc=args.dropout_perc,
n_cnn_filters=args.n_cnn_filters, class_overlaps=args.class_overlaps,
verbose=args.verbose)
if args.architecture == 'seldnet_augmented':
n_time_frames = test_predictors.shape[-1]
model = Seldnet_augmented(time_dim=n_time_frames, freq_dim=args.freq_dim, input_channels=args.input_channels,
output_classes=args.output_classes, pool_size=args.pool_size,
pool_time=args.pool_time, rnn_size=args.rnn_size, n_rnn=args.n_rnn,
fc_size=args.fc_size, dropout_perc=args.dropout_perc,
cnn_filters=args.cnn_filters, class_overlaps=args.class_overlaps,
verbose=args.verbose)
if args.use_cuda:
print("Moving model to gpu")
model = model.to(device)
#compute number of parameters
model_params = sum([np.prod(p.size()) for p in model.parameters()])
print ('Total paramters: ' + str(model_params))
#set up the loss functions
criterion_sed = nn.BCELoss()
criterion_doa = nn.MSELoss()
#set up optimizer
optimizer = Adam(params=model.parameters(), lr=args.lr)
#set up training state dict that will also be saved into checkpoints
state = {"step" : 0,
"worse_epochs" : 0,
"epochs" : 0,
"best_loss" : np.Inf}
#load model checkpoint if desired
if args.load_model is not None:
print("Continuing training full model from checkpoint " + str(args.load_model))
state = load_model(model, optimizer, args.load_model, args.use_cuda)
#TRAIN MODEL
print('TRAINING START')
train_loss_hist = []
val_loss_hist = []
epoch = 1
while state["worse_epochs"] < args.patience:
print("Training epoch " + str(epoch))
avg_time = 0.
model.train()
train_loss = 0.
with tqdm(total=len(tr_dataset) // args.batch_size) as pbar:
for example_num, (x, target) in enumerate(tr_data):
target = target.to(device)
x = x.to(device)
t = time.time()
# Compute loss for each instrument/model
optimizer.zero_grad()
sed, doa = model(x)
loss = seld_loss(x, target, model, criterion_sed, criterion_doa)
loss.backward()
train_loss += (1. / float(example_num + 1)) * (loss - train_loss)
optimizer.step()
state["step"] += 1
t = time.time() - t
avg_time += (1. / float(example_num + 1)) * (t - avg_time)
pbar.update(1)
#PASS VALIDATION DATA
val_loss = evaluate(model, device, criterion_sed, criterion_doa, val_data)
print("VALIDATION FINISHED: LOSS: " + str(val_loss))
# EARLY STOPPING CHECK
checkpoint_path = os.path.join(args.checkpoint_dir, "checkpoint")
if val_loss >= state["best_loss"]:
state["worse_epochs"] += 1
else:
print("MODEL IMPROVED ON VALIDATION SET!")
state["worse_epochs"] = 0
state["best_loss"] = val_loss
state["best_checkpoint"] = checkpoint_path
# CHECKPOINT
print("Saving model...")
save_model(model, optimizer, state, checkpoint_path)
state["epochs"] += 1
#state["worse_epochs"] = 200
train_loss_hist.append(train_loss.cpu().detach().numpy())
val_loss_hist.append(val_loss.cpu().detach().numpy())
epoch += 1
#LOAD BEST MODEL AND COMPUTE LOSS FOR ALL SETS
print("TESTING")
# Load best model based on validation loss
state = load_model(model, None, state["best_checkpoint"], args.use_cuda)
#compute loss on all set_output_size
train_loss = evaluate(model, device, criterion_sed, criterion_doa, tr_data)
val_loss = evaluate(model, device, criterion_sed, criterion_doa, val_data)
test_loss = evaluate(model, device, criterion_sed, criterion_doa, test_data)
#PRINT AND SAVE RESULTS
results = {'train_loss': train_loss.cpu().detach().numpy(),
'val_loss': val_loss.cpu().detach().numpy(),
'test_loss': test_loss.cpu().detach().numpy(),
'train_loss_hist': train_loss_hist,
'val_loss_hist': val_loss_hist}
print ('RESULTS')
for i in results:
if 'hist' not in i:
print (i, results[i])
out_path = os.path.join(args.results_path, 'results_dict.json')
np.save(out_path, results)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
#saving/loading parameters
parser.add_argument('--results_path', type=str, default='RESULTS/Task2',
help='Folder to write results dicts into')
parser.add_argument('--checkpoint_dir', type=str, default='RESULTS/Task2',
help='Folder to write checkpoints into')
parser.add_argument('--load_model', type=str, default=None,
help='Reload a previously trained model (whole task model)')
#dataset parameters
parser.add_argument('--training_predictors_path', type=str, default='DATASETS/processed/task2_predictors_train.pkl')
parser.add_argument('--training_target_path', type=str, default='DATASETS/processed/task2_target_train.pkl')
parser.add_argument('--validation_predictors_path', type=str, default='DATASETS/processed/task2_predictors_validation.pkl')
parser.add_argument('--validation_target_path', type=str, default='DATASETS/processed/task2_target_validation.pkl')
parser.add_argument('--test_predictors_path', type=str, default='DATASETS/processed/task2_predictors_test.pkl')
parser.add_argument('--test_target_path', type=str, default='DATASETS/processed/task2_target_test.pkl')
#training parameters
parser.add_argument('--gpu_id', type=int, default=0)
parser.add_argument('--use_cuda', type=str, default='True')
parser.add_argument('--early_stopping', type=str, default='True')
parser.add_argument('--fixed_seed', type=str, default='False')
parser.add_argument('--lr', type=float, default=0.00001)
parser.add_argument('--batch_size', type=int, default=3,
help="Batch size")
parser.add_argument('--sr', type=int, default=32000,
help="Sampling rate")
parser.add_argument('--patience', type=int, default=100,
help="Patience for early stopping on validation set")
#model parameters
#the following parameters produce a prediction for each 100-msecs frame
parser.add_argument('--architecture', type=str, default='seldnet_augmented',
help="model's architecture, can be seldnet_vanilla or seldnet_augmented")
parser.add_argument('--input_channels', type=int, default=4,
help="4/8 for 1/2 mics, multiply x2 if using also phase information")
parser.add_argument('--class_overlaps', type=int, default=3,
help= 'max number of simultaneous sounds of the same class')
parser.add_argument('--time_dim', type=int, default=4800)
parser.add_argument('--freq_dim', type=int, default=256)
parser.add_argument('--output_classes', type=int, default=14)
parser.add_argument('--pool_size', type=str, default='[[8,2],[8,2],[2,2],[1,1]]')
parser.add_argument('--cnn_filters', type=str, default='[64,128,256,512]',
help= 'only for seldnet augmented')
parser.add_argument('--pool_time', type=str, default='True')
parser.add_argument('--rnn_size', type=int, default=256)
parser.add_argument('--n_rnn', type=int, default=3)
parser.add_argument('--fc_size', type=int, default=1024)
parser.add_argument('--dropout_perc', type=float, default=0.3)
parser.add_argument('--n_cnn_filters', type=float, default=64,
help= 'only for seldnet vanilla')
parser.add_argument('--verbose', type=str, default='False')
parser.add_argument('--sed_loss_weight', type=float, default=1.)
parser.add_argument('--doa_loss_weight', type=float, default=5.)
args = parser.parse_args()
#eval string bools and lists
args.use_cuda = eval(args.use_cuda)
args.early_stopping = eval(args.early_stopping)
args.fixed_seed = eval(args.fixed_seed)
args.pool_size= eval(args.pool_size)
args.pool_time = eval(args.pool_time)
args.cnn_filters = eval(args.cnn_filters)
args.verbose = eval(args.verbose)
main(args)