-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathpreprocessing.py
364 lines (318 loc) · 18.1 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import argparse
import os, sys
import numpy as np
import librosa
import pickle
import random
import utility_functions as uf
'''
Process the unzipped dataset folders and output numpy matrices (.pkl files)
containing the pre-processed data for task1 and task2, separately.
Separate training, validation and test matrices are saved.
Command line inputs define which task to process and its parameters.
'''
sound_classes_dict_task2 = {'Chink_and_clink':0,
'Computer_keyboard':1,
'Cupboard_open_or_close':2,
'Drawer_open_or_close':3,
'Female_speech_and_woman_speaking':4,
'Finger_snapping':5,
'Keys_jangling':6,
'Knock':7,
'Laughter':8,
'Male_speech_and_man_speaking':9,
'Printer':10,
'Scissors':11,
'Telephone':12,
'Writing':13}
def preprocessing_task1(args):
'''
predictors output: ambisonics mixture waveforms
Matrix shape: -x: data points
-4 or 8: ambisonics channels
-signal samples
target output: monoaural clean speech waveforms
Matrix shape: -x: data points
-1: it's monoaural
-signal samples
'''
sr_task1 = 16000
def pad(x, size=sr_task1*10):
#pad all sounds to 10 seconds
length = x.shape[-1]
if length > size:
pad = x[:,:size]
else:
pad = np.zeros((x.shape[0], size))
pad[:,:length] = x
return pad
def process_folder(folder, args):
#process single dataset folder
print ('Processing ' + folder + ' folder...')
predictors = []
target = []
count = 0
main_folder = os.path.join(args.input_path, folder)
contents = os.listdir(main_folder)
for sub in contents:
sub_folder = os.path.join(main_folder, sub)
contents_sub = os.listdir(sub_folder)
for lower in contents_sub:
lower_folder = os.path.join(sub_folder, lower)
data_path = os.path.join(lower_folder, 'data')
data = os.listdir(data_path)
data = [i for i in data if i.split('.')[0].split('_')[-1]=='A'] #filter files with mic B
for sound in data:
sound_path = os.path.join(data_path, sound)
target_path = '/'.join((sound_path.split('/')[:-2] + ['labels'] + [sound_path.split('/')[-1]])) #change data with labels
target_path = target_path[:-6] + target_path[-4:] #remove mic ID
#target_path = sound_path.replace('data', 'labels').replace('_A', '') #old wrong line
samples, sr = librosa.load(sound_path, sr_task1, mono=False)
#samples = pad(samples)
if args.num_mics == 2: # if both ambisonics mics are wanted
#stack the additional 4 channels to get a (8, samples) shap
B_sound_path = sound_path[:-5] + 'B' + sound_path[-4:] #change A with B
#B_sound_path = sound_path.replace('A', 'B') #old
samples_B, sr = librosa.load(B_sound_path, sr_task1, mono=False)
#samples_B = pad(samples_B)
samples = np.concatenate((samples,samples_B), axis=-2)
samples_target, sr = librosa.load(target_path, sr_task1, mono=False)
samples_target = samples_target.reshape((1, samples_target.shape[0]))
#samples_target = pad(samples_target)
#append to final arrays
if args.segmentation_len is not None:
#segment longer file to shorter frames
#not padding if segmenting to avoid silence frames
segmentation_len_samps = int(sr_task1 * args.segmentation_len)
predictors_cuts, target_cuts = uf.segment_waveforms(samples, samples_target, segmentation_len_samps)
for i in range(len(predictors_cuts)):
predictors.append(predictors_cuts[i])
target.append(target_cuts[i])
#print (predictors_cuts[i].shape, target_cuts[i].shape)
else:
samples = pad(samples)
samples_target = pad(samples_target)
predictors.append(samples)
target.append(samples_target)
count += 1
if args.num_data is not None and count >= args.num_data:
break
else:
continue
break
else:
continue
break
return predictors, target
#process all required folders
predictors_test, target_test = process_folder('L3DAS_Task1_dev', args)
if args.training_set == 'train100':
predictors_train, target_train = process_folder('L3DAS_Task1_train100', args)
elif args.training_set == 'train360':
predictors_train, target_train = process_folder('L3DAS_Task1_train360', args)
elif args.training_set == 'both':
predictors_train100, target_train100 = process_folder('L3DAS_Task1_train100')
predictors_train360, target_train360 = process_folder('L3DAS_Task1_train360')
predictors_train = predictors_train100 + predictors_train360
target_train = target_train100 + target_train360
#split train set into train and development
split_point = int(len(predictors_train) * args.train_val_split)
predictors_training = predictors_train[:split_point] #attention: changed training names
target_training = target_train[:split_point]
predictors_validation = predictors_train[split_point:]
target_validation = target_train[split_point:]
#save numpy matrices in pickle files
print ('Saving files')
if not os.path.isdir(args.output_path):
os.makedirs(args.output_path)
with open(os.path.join(args.output_path,'task1_predictors_train.pkl'), 'wb') as f:
pickle.dump(predictors_training, f, protocol=4)
with open(os.path.join(args.output_path,'task1_predictors_validation.pkl'), 'wb') as f:
pickle.dump(predictors_validation, f, protocol=4)
with open(os.path.join(args.output_path,'task1_predictors_test.pkl'), 'wb') as f:
pickle.dump(predictors_test, f, protocol=4)
with open(os.path.join(args.output_path,'task1_target_train.pkl'), 'wb') as f:
pickle.dump(target_training, f, protocol=4)
with open(os.path.join(args.output_path,'task1_target_validation.pkl'), 'wb') as f:
pickle.dump(target_validation, f, protocol=4)
with open(os.path.join(args.output_path,'task1_target_test.pkl'), 'wb') as f:
pickle.dump(target_test, f, protocol=4)
if args.segmentation_len is not None:
#if segmenting, generate also a test set matrix without segmenting, just for the evaluation
args.segmentation_len = None
print ('processing uncut test set')
predictors_test_uncut, target_test_uncut = process_folder('L3DAS_Task1_dev', args)
print ('Saving files')
with open(os.path.join(args.output_path,'task1_predictors_test_uncut.pkl'), 'wb') as f:
pickle.dump(predictors_test_uncut, f)
with open(os.path.join(args.output_path,'task1_target_test_uncut.pkl'), 'wb') as f:
pickle.dump(target_test_uncut, f)
print ('Matrices successfully saved')
print ('Training set shape: ', np.array(predictors_training).shape, np.array(target_training).shape)
print ('Validation set shape: ', np.array(predictors_validation).shape, np.array(target_validation).shape)
print ('Test set shape: ', np.array(predictors_test).shape, np.array(target_test).shape)
def preprocessing_task2(args):
'''
predictors output: ambisonics stft
Matrix shape: -x data points
- num freqency bins
- num time frames
target output: matrix containing all active sounds and their position at each
100msec frame.
Matrix shape: -x data points
-600: frames
-168: 14 (clases) * 3 (max simultaneous sounds per frame)
concatenated to 14 (classes) * 3 (max simultaneous sounds per frame) * 3 (xyz coordinates)
'''
sr_task2 = 32000
sound_classes=['Chink_and_clink','Computer_keyboard','Cupboard_open_or_close',
'Drawer_open_or_close','Female_speech_and_woman_speaking',
'Finger_snapping','Keys_jangling','Knock',
'Laughter','Male_speech_and_man_speaking',
'Printer','Scissors','Telephone','Writing']
file_size=60.0
max_label_distance = 2. #maximum xyz value (serves for normalization)
def process_folder(folder, args):
print ('Processing ' + folder + ' folder...')
predictors = []
target = []
data_path = os.path.join(folder, 'data')
labels_path = os.path.join(folder, 'labels')
data = os.listdir(data_path)
data = [i for i in data if i.split('.')[0].split('_')[-1]=='A']
count = 0
for sound in data:
ov_set = sound.split('_')[-3]
if ov_set in args.ov_subsets: #if data point is in the desired subsets ov
target_name = 'label_' + sound.replace('_A', '').replace('.wav', '.csv')
sound_path = os.path.join(data_path, sound)
target_path = os.path.join(data_path, target_name)
target_path = '/'.join((target_path.split('/')[:-2] + ['labels'] + [target_path.split('/')[-1]])) #change data with labels
#target_path = target_path.replace('data', 'labels') #old
samples, sr = librosa.load(sound_path, sr_task2, mono=False)
if args.num_mics == 2: # if both ambisonics mics are wanted
#stack the additional 4 channels to get a (8, samples) shape
B_sound_path = sound_path[:-5] + 'B' + sound_path[-4:] #change A with B
#B_sound_path = sound_path.replace('A', 'B') old
samples_B, sr = librosa.load(B_sound_path, sr_task2, mono=False)
samples = np.concatenate((samples,samples_B), axis=-2)
#compute stft
stft = uf.spectrum_fast(samples, nperseg=args.stft_nperseg,
noverlap=args.stft_noverlap,
window=args.stft_window,
output_phase=args.output_phase)
#stft = np.reshape(samples, (samples.shape[1], samples.shape[0],
# samples.shape[2]))
#compute matrix label
label = uf.csv_to_matrix_task2(target_path, sound_classes_dict_task2,
dur=60, step=args.frame_len/1000., max_loc_value=2.,
no_overlaps=args.no_overlaps) #eric func
#label = uf.get_label_task2(target_path,0.1,file_size,sr_task2, #giuseppe func
# sound_classes,int(file_size/(args.frame_len/1000.)),
# max_label_distance)
#segment into shorter frames
if args.predictors_len_segment is not None and args.target_len_segment is not None:
#segment longer file to shorter frames
#not padding if segmenting to avoid silence frames
predictors_cuts, target_cuts = uf.segment_task2(stft, label, predictors_len_segment=args.predictors_len_segment,
target_len_segment=args.target_len_segment, overlap=args.segment_overlap)
for i in range(len(predictors_cuts)):
predictors.append(predictors_cuts[i])
target.append(target_cuts[i])
#print (predictors_cuts[i].shape, target_cuts[i].shape)
else:
predictors.append(stft)
target.append(label)
#print (samples.shape, np.max(label), np.min(label))
count += 1
if args.num_data is not None and count >= args.num_data:
break
return predictors, target
train_folder = os.path.join(args.input_path, 'L3DAS_Task2_train')
test_folder = os.path.join(args.input_path, 'L3DAS_Task2_dev')
predictors_train, target_train = process_folder(train_folder, args)
predictors_test, target_test = process_folder(test_folder, args)
predictors_test = np.array(predictors_test)
target_test = np.array(target_test)
#print (predictors_test.shape, target_test.shape)
#split train set into train and development
split_point = int(len(predictors_train) * args.train_val_split)
predictors_training = predictors_train[:split_point] #attention: changed training names
target_training = target_train[:split_point]
predictors_validation = predictors_train[split_point:]
target_validation = target_train[split_point:]
#save numpy matrices into pickle files
print ('Saving files')
if not os.path.isdir(args.output_path):
os.makedirs(args.output_path)
with open(os.path.join(args.output_path,'task2_predictors_train.pkl'), 'wb') as f:
pickle.dump(predictors_training, f, protocol=4)
with open(os.path.join(args.output_path,'task2_predictors_validation.pkl'), 'wb') as f:
pickle.dump(predictors_validation, f, protocol=4)
with open(os.path.join(args.output_path,'task2_predictors_test.pkl'), 'wb') as f:
pickle.dump(predictors_test, f, protocol=4)
with open(os.path.join(args.output_path,'task2_target_train.pkl'), 'wb') as f:
pickle.dump(target_training, f, protocol=4)
with open(os.path.join(args.output_path,'task2_target_validation.pkl'), 'wb') as f:
pickle.dump(target_validation, f, protocol=4)
with open(os.path.join(args.output_path,'task2_target_test.pkl'), 'wb') as f:
pickle.dump(target_test, f, protocol=4)
print ('Matrices successfully saved')
print ('Training set shape: ', np.array(predictors_training).shape, np.array(target_training).shape)
print ('Validation set shape: ', np.array(predictors_validation).shape, np.array(target_validation).shape)
print ('Test set shape: ', np.array(predictors_test).shape, np.array(target_test).shape)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
#i/o
parser.add_argument('--task', type=int,
help='task to be pre-processed')
parser.add_argument('--input_path', type=str, default='DATASETS/Task1',
help='directory where the dataset has been downloaded')
parser.add_argument('--output_path', type=str, default='DATASETS/processed',
help='where to save the numpy matrices')
#processing type
parser.add_argument('--train_val_split', type=float, default=0.8,
help='perc split between train and validation sets')
parser.add_argument('--num_mics', type=int, default=1,
help='how many ambisonics mics (1 or 2)')
parser.add_argument('--num_data', type=int, default=None,
help='how many datapoints per set. 0 means all available data')
#task1 only parameters
#the following parameters produce 2-seconds waveform frames without overlap,
#use only the train100 training set.
parser.add_argument('--training_set', type=str, default='train100',
help='which training set: train100, train360 or both')
parser.add_argument('--segmentation_len', type=float, default=2,
help='length of segmented frames in seconds')
#task2 only parameters
#the following stft parameters produce 8 stft fframes per each label frame
#if label frames are 100msecs, stft frames are 12.5 msecs
#data-points are segmented into 15-seconde windows (150 target frames, 150*8 stft frames)
parser.add_argument('--frame_len', type=int, default=100,
help='frame length for SELD evaluation (in msecs)')
parser.add_argument('--stft_nperseg', type=int, default=512,
help='num of stft frames')
parser.add_argument('--stft_noverlap', type=int, default=112,
help='num of overlapping samples for stft')
parser.add_argument('--stft_window', type=str, default='hamming',
help='stft window_type')
parser.add_argument('--output_phase', type=str, default='False',
help='concatenate phase channels to stft matrix')
parser.add_argument('--predictors_len_segment', type=int, default=None,
help='number of segmented frames for stft data')
parser.add_argument('--target_len_segment', type=int, default=None,
help='number of segmented frames for stft data')
parser.add_argument('--segment_overlap', type=float, default=None,
help='overlap factor for segmentation')
parser.add_argument('--ov_subsets', type=str, default='["ov1", "ov2", "ov3"]',
help='should be a list of strings. Can contain ov1, ov2 and/or ov3')
parser.add_argument('--no_overlaps', type=str, default='False',
help='should be a list of strings. Can contain ov1, ov2 and/or ov3')
args = parser.parse_args()
args.output_phase = eval(args.output_phase)
args.ov_subsets = eval(args.ov_subsets)
args.no_overlaps = eval(args.no_overlaps)
if args.task == 1:
preprocessing_task1(args)
elif args.task == 2:
preprocessing_task2(args)