-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproc_event.py
186 lines (149 loc) · 6.38 KB
/
proc_event.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import argparse
from collections import defaultdict
import dill
import numpy as np
import polars as pl
from tqdm import tqdm
from nmmo.lib.event_code import EventCode
from nmmo.systems.item import ALL_ITEM
from nmmo.systems.skill import COMBAT_SKILL, HARVEST_SKILL
CODE_TO_EVENT = {v: k for k, v in EventCode.__dict__.items() if not k.startswith("_")}
ITEM_ID_TO_NAME = {item.ITEM_TYPE_ID: item.__name__ for item in ALL_ITEM}
SKILL_ID_TO_NAME = {skill.SKILL_ID: skill.__name__ for skill in COMBAT_SKILL + HARVEST_SKILL}
# event tuple key to string
def event_key_to_str(event_key):
if event_key[0] == EventCode.LEVEL_UP:
return f"LEVEL_{SKILL_ID_TO_NAME[event_key[1]]}"
elif event_key[0] == EventCode.SCORE_HIT:
return f"ATTACK_NUM_{SKILL_ID_TO_NAME[event_key[1]]}"
elif event_key[0] in [
EventCode.HARVEST_ITEM,
EventCode.CONSUME_ITEM,
EventCode.EQUIP_ITEM,
EventCode.LIST_ITEM,
EventCode.BUY_ITEM,
EventCode.FIRE_AMMO,
]:
return f"{CODE_TO_EVENT[event_key[0]]}_{ITEM_ID_TO_NAME[event_key[1]]}"
elif event_key[0] == EventCode.GO_FARTHEST:
return "3_PROGRESS_TO_CENTER"
elif event_key[0] == EventCode.AGENT_CULLED:
return "2_AGENT_LIFESPAN"
elif event_key[0] == EventCode.PLAYER_KILL:
target = "NPC" if event_key[1] == 0 else "Agent"
return f"KILLED_{target}"
else:
return CODE_TO_EVENT[event_key[0]]
def extract_policy_name(agent_policy_map, agent_id):
if len(agent_policy_map) == 0:
return "learner"
assert agent_id in agent_policy_map, "Agent id not found in policy map"
return agent_policy_map[agent_id]
def gather_agent_events_by_policy(data_dir):
data_by_policy = defaultdict(list)
data_list = [f for f in os.listdir(data_dir) if f.endswith(".metadata.pkl")]
for file_name in tqdm(data_list):
data = dill.load(open(f"{data_dir}/{file_name}", "rb"))
final_tick = data["tick"]
agent_policy_map = {}
map_file = f"{data_dir}/{file_name.split('.metadata.pkl')[0]}.policy_map.pkl"
if os.path.exists(map_file):
with open(map_file, "rb") as f:
agent_policy_map = dill.load(f)
for agent_id, vals in data["event_stats"].items():
policy_name = extract_policy_name(agent_policy_map, agent_id)
# Agent survived until the end
if (EventCode.AGENT_CULLED,) not in vals:
vals[(EventCode.AGENT_CULLED,)] = final_tick
data_by_policy[policy_name].append(vals)
return data_by_policy
def get_event_stats(policy_name, grouped_data):
num_agents = len(grouped_data)
assert num_agents > 0, "There should be at least one agent"
cnt_attack = 0
cnt_buy = 0
cnt_consume = 0
cnt_equip = 0
cnt_harvest = 0
cnt_list = 0
cnt_fire = 0
cnt_eat = 0
cnt_drink = 0
cnt_kill_agent = 0
cnt_kill_npc = 0
results = {"0_NAME": policy_name, "1_COUNT": num_agents}
event_data = defaultdict(list)
for data in grouped_data:
for event, val in data.items():
event_data[event].append(val)
total_ticks = 0
for event, vals in event_data.items():
if event[0] == EventCode.LEVEL_UP:
# Base skill level is 1
vals += [1] * (num_agents - len(vals))
results[event_key_to_str(event)] = np.mean(vals) # AVG skill level
elif event[0] == EventCode.AGENT_CULLED:
life_span = np.mean(vals)
total_ticks = sum(vals)
results["2_AGENT_LIFESPAN_AVG"] = life_span
results["2_AGENT_LIFESPAN_SD"] = np.std(vals)
elif event[0] == EventCode.GO_FARTHEST:
results["3_PROGRESS_TO_CENTER_AVG"] = np.mean(vals)
results["3_PROGRESS_TO_CENTER_SD"] = np.std(vals)
else:
results[event_key_to_str(event)] = sum(vals) / num_agents
if event[0] == EventCode.SCORE_HIT:
cnt_attack += sum(vals)
if event[0] == EventCode.BUY_ITEM:
cnt_buy += sum(vals)
if event[0] == EventCode.CONSUME_ITEM:
cnt_consume += sum(vals)
if event[0] == EventCode.EQUIP_ITEM:
cnt_equip += sum(vals)
if event[0] == EventCode.FIRE_AMMO:
cnt_fire += sum(vals)
if event[0] == EventCode.HARVEST_ITEM:
cnt_harvest += sum(vals)
if event[0] == EventCode.LIST_ITEM:
cnt_list += sum(vals)
if event[0] == EventCode.EAT_FOOD:
cnt_eat += sum(vals)
if event[0] == EventCode.DRINK_WATER:
cnt_drink += sum(vals)
if event == (EventCode.PLAYER_KILL, 0):
cnt_kill_npc += sum(vals)
if event == (EventCode.PLAYER_KILL, 1):
cnt_kill_agent += sum(vals)
assert total_ticks > 0, "Total ticks should be greater than 0"
# These normalized values represent the events per 100 ticks (per agent)
results["4_NORM_ATTACK"] = 100 * cnt_attack / total_ticks
results["4_NORM_BUY"] = 100 * cnt_buy / total_ticks
results["4_NORM_CONSUME"] = 100 * cnt_consume / total_ticks
results["4_NORM_EQUIP"] = 100 * cnt_equip / total_ticks
results["4_NORM_FIRE"] = 100 * cnt_fire / total_ticks
results["4_NORM_HARVEST"] = 100 * cnt_harvest / total_ticks
results["4_NORM_LIST"] = 100 * cnt_list / total_ticks
results["4_NORM_EAT"] = 100 * cnt_eat / total_ticks
results["4_NORM_DRINK"] = 100 * cnt_drink / total_ticks
results["4_NORM_KILL_NPC"] = 100 * cnt_kill_npc / total_ticks
results["4_NORM_KILL_AGENT"] = 100 * cnt_kill_agent / total_ticks
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process replay data")
parser.add_argument("policy_store_dir", type=str, help="Path to the policy directory")
args = parser.parse_args()
# Gather the event data by policies, across multiple replays
data_by_policy = gather_agent_events_by_policy(args.policy_store_dir)
policy_results = [
get_event_stats(pol_name, pol_data) for pol_name, pol_data in data_by_policy.items()
]
policy_df = pl.DataFrame(policy_results).fill_null(0).sort("0_NAME")
policy_df = policy_df.select(sorted(policy_df.columns))
policy_df.write_csv(
os.path.join(args.policy_store_dir, "events_by_policy.tsv"),
separator="\t",
float_precision=6,
)
print("Result file saved as events_by_policy.tsv")
print("Done.")