-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathsolver.py
160 lines (118 loc) · 5.63 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os
import sys
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.optim import lr_scheduler
import utils
import config
cuda = torch.cuda.is_available()
kwargs = {'num_workers':1, 'pin_memory':True} if cuda else {}
print ("gpu available :", cuda)
device = torch.device("cuda" if cuda else "cpu")
num_gpu = torch.cuda.device_count()
torch.cuda.manual_seed(5)
class Solver(object):
def __init__(self, model, dataset, args):
self.samplecnn = model
self.dataset = dataset
self.args = args
self.curr_epoch = 0
self.model_savepath = './model'
if not os.path.exists(self.model_savepath):
os.makedirs(self.model_savepath)
# define loss function
self.bce = nn.BCEWithLogitsLoss()
self._initialize()
self.set_mode('train')
def _initialize(self):
self.optimizer = torch.optim.SGD(self.samplecnn.parameters(), lr=config.LR, weight_decay=1e-6, momentum=0.9, nesterov=True)
self.scheduler = lr_scheduler.ReduceLROnPlateau(self.optimizer, mode='min', factor=0.2, patience=2, verbose=True)
# initialize cuda
if len(self.args.gpus) > 1:
self.multigpu = True
else :
self.multigpu = False
utils.handle_multigpu(self.multigpu, self.args.gpus, num_gpu)
if self.multigpu :
self.samplecnn = nn.DataParallel(self.samplecnn, device_ids=self.args.gpus)
self.samplecnn.to(device)
def set_mode(self, mode):
print ("solver mode : ", mode)
if mode == 'train':
self.samplecnn.train()
self.dataset.set_mode('train')
elif mode == 'valid' :
self.samplecnn.eval()
self.dataset.set_mode('valid')
elif mode == 'test':
self.samplecnn.eval()
self.dataset.set_mode('test')
self.dataloader = DataLoader(self.dataset, batch_size=config.BATCH_SIZE, shuffle=True, drop_last=True, **kwargs)
def train(self) :
# Train the network
for epoch in range(config.NUM_EPOCHS):
self.set_mode('train')
avg_auc1 = []
avg_ap1 = []
avg_auc2 = []
avg_ap2 = []
for i, data in enumerate(self.dataloader):
audio = data['audio'].to(device)
label = data['label'].to(device)
outputs = self.samplecnn(audio)
loss = self.bce(outputs, label)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
if (i+1) % 10 == 0:
print ("Epoch [%d/%d], Iter [%d/%d] loss : %.4f" % (epoch+1, config.NUM_EPOCHS, i+1, len(self.dataloader), loss.item()))
# retrieval
auc1, ap1 = utils.tagwise_aroc_ap(label.cpu().detach().numpy(), outputs.cpu().detach().numpy())
avg_auc1.append(np.mean(auc1))
avg_ap1.append(np.mean(ap1))
# annotation
auc2, ap2 = utils.itemwise_aroc_ap(label.cpu().detach().numpy(), outputs.cpu().detach().numpy())
avg_auc2.append(np.mean(auc2))
avg_ap2.append(np.mean(ap2))
print ("Retrieval : AROC = %.3f, AP = %.3f / "%(np.mean(auc1), np.mean(ap1)), "Annotation : AROC = %.3f, AP = %.3f"%(np.mean(auc2), np.mean(ap2)))
self.curr_epoch +=1
print ("Retrieval : Average AROC = %.3f, AP = %.3f / "%(np.mean(avg_auc1), np.mean(avg_ap1)), "Annotation :Average AROC = %.3f, AP = %.3f"%(np.mean(avg_auc2), np.mean(avg_ap2)))
print ('Evaluating...')
eval_loss = self.eval()
self.scheduler.step(eval_loss) # use the learning rate scheduler
curr_lr = self.optimizer.param_groups[0]['lr']
print ('Learning rate : {}'.format(curr_lr))
if curr_lr < 1e-7:
print ("Early stopping")
break
torch.save(self.samplecnn.module.state_dict(), self.model_savepath / self.samplecnn.module.__class__.__name__ + '_' + str(self.curr_epoch) + '.pth')
# Validate the network on the val_loader (during training) or test_loader (for checking result)
# During training use this function for validation data.
def eval():
self.set_mode('valid')
eval_loss = 0.0
avg_auc1 = []
avg_ap1 = []
avg_auc2 = []
avg_ap2 = []
for i, data in enumerate(self.dataloader):
audio = data['audio'].to(device)
label = data['label'].to(device)
outputs = self.samplecnn(audio)
loss = self.bce(outputs, label)
auc1, aprec1 = utils.tagwise_aroc_ap(label.cpu().detach().numpy(), outputs.cpu().detach.numpy())
avg_auc1.append(np.mean(auc1))
avg_ap1.append(np.mean(aprec1))
auc2, aprec2 = utils.itemwise_aroc_ap(label.cpu().detach.numpy(), outputs.cpu().detach.numpy())
avg_auc2.append(np.mean(auc2))
avg_ap2.append(np.mean(aprec2))
eval_loss += loss.data[0]
avg_loss =eval_loss/len(val_loader)
print ("Retrieval : Average AROC = %.3f, AP = %.3f / "%(np.mean(avg_auc1), np.mean(avg_ap1)), "Annotation : Average AROC = %.3f, AP = %.3f"%(np.mean(avg_auc2), np.mean(avg_ap2)))
print ('Average loss: {:.4f} \n'. format(avg_loss))
return avg_loss
if __name__ == '__main__':
model = SampleCNN()
model = model.load_state_dict(torch.load('SampleCNN.pth'))