-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine.py
185 lines (157 loc) · 5.38 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
def IsSwitch(input_string: str) -> bool:
"""
Check if the input string contains the digits '1', '2', '3', and '4' which correspond to the switch positions.
Args:
input_string (str): The string to be checked.
Returns:
bool: True if all digits '1', '2', '3', and '4' are present in the input string, False otherwise.
"""
# Check if the string contains the digits '1', '2', '3', and '4'.
one = "1" in input_string
two = "2" in input_string
three = "3" in input_string
four = "4" in input_string
# Return True if all digits are present, False otherwise.
return one and two and three and four
def GetOutcome(input_sequence: str, output_sequence: str) -> str:
"""
Solves a single switch.
Args:
input_sequence (str): The input sequence.
output_sequence (str): The output sequence.
Returns:
str: The single switch.
"""
# Create a dictionary mapping the characters in the input sequence to their indices
map = {i: n for n, i in enumerate(input_sequence)}
# Create a list of characters representing the outcome sequence
# by using the indices from the map to look up the corresponding
# characters in the output sequence
outcome = [map[o] + 1 for o in output_sequence]
# Join the list into a string and return it
return "".join(str(x) for x in outcome)
def compute(formula: str) -> str:
"""
Compute the outcome of the given formula.
The formula should be a string containing the switch positions and the outcome
separated by an '=' character.
Args:
formula (str): The formula to be computed.
Returns:
str: The computed outcome.
"""
fml, outcome = formula.split("=")
fml = fml.split("+")
fml.append(outcome)
del outcome
def switch(a: str, b: str) -> str:
"""
Compute the outcome of a single switch.
Args:
a (str): The sequence to be switched.
b (str): The switch positions.
Returns:
str: The computed outcome.
"""
a = {o: i for o, i in enumerate(a)}
new = [a[int(n) - 1] for n in b]
return "".join(str(x) for x in new)
def ReverseSwitch(b: str, outcome: str) -> str:
"""
Compute the reverse of a single switch.
Args:
b (str): The switch positions.
outcome (str): The outcome of the switch.
Returns:
str: The computed reverse switch.
"""
# Create a list of characters representing 'a' initialized with empty strings
a = [""] * len(outcome)
# Iterate over the outcome string and corresponding indices from 'b'
for i, char in enumerate(outcome):
# Convert the character from 'b' into an integer index, and place the corresponding 'outcome' character in 'a'
a[int(b[i]) - 1] = char
# Join the list back into a string and return it
return "".join(a)
x_index = fml.index("x")
lhs = fml[:x_index]
rhs = fml[x_index + 1 :]
if len(rhs) == 1:
rhs = rhs[0]
else:
b = rhs[-1]
for i in range(1, len(rhs)):
b = ReverseSwitch(rhs[-i - 1], b)
rhs = b
del b
match len(lhs):
case 0:
return rhs
case 1:
return GetOutcome(lhs[0], rhs)
case _:
a = lhs[0]
for l in lhs[1:]:
a = switch(a, l)
return GetOutcome(
a,
rhs,
)
def IsComplete(fml: str) -> str:
"""
Determines the completeness and type of a formula.
Args:
fml (str): The formula to be checked.
Returns:
str: The type of completeness or category of the formula,
such as 'empty', 'shape', 'short', 'long', or 'incomplete'.
"""
if fml == "":
return "empty"
if fml == "x":
return "shape"
if "=" in fml:
parts = fml.split("=")
if len(parts) != 2:
return "incomplete"
outcome = parts[1].strip()
first_part = fml.split("+")[0]
if len(outcome) == 4:
if IsSwitch(outcome) and (IsSwitch(first_part) or first_part == "x"):
return "short"
elif sum(map(lambda x: x in outcome, first_part)) == 4:
return "long"
else:
return "incomplete"
else:
return "incomplete"
if "+" not in fml:
return "incomplete"
parts = fml.split("+")
if "x" not in parts:
return "incomplete"
parts = [p for p in parts if p != "x"]
if all(map(IsSwitch, parts)):
return "shape"
else:
return "incomplete"
if __name__ == "__main__":
while True:
fml = input("Enter the formula: ").strip()
type = IsComplete(fml)
match type:
case "incomplete" | "shape":
print("The formula is incomplete")
case "empty":
import sys
sys.exit()
case "short":
print(compute(fml))
case "long":
parts, outcome = fml.split("=")
parts = parts.split("+")
outcome = GetOutcome(parts[0], outcome)
parts = parts[1:]
formula = "+".join(parts)
formula = formula + "=" + outcome
print(compute(formula))