-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsearchFunction.R
102 lines (88 loc) · 4.1 KB
/
searchFunction.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#' Search the R function based on the provided text
#'
#' This function searches for an R function that corresponds to the text
#' provided either through the RStudio editor selection or the clipboard.
#' It fetches the related R function and outputs its name, package, and
#' a brief description. The function uses GPT-4 for its underlying search.
#'
#' @title Search R Functions based on Text
#' @description Searches for an R function related to the provided text
#' either through the RStudio editor selection or clipboard.
#' @param Summary_nch Numeric, number of characters to limit the function description (default = 100).
#' @param Model String, the model used for the search, default is "gpt-4-0613".
#' @param SelectedCode Logical, whether to get text from RStudio selection (default = TRUE).
#' @param verbose Logical, whether to print the results verbosely (default = TRUE).
#' @param SlowTone Logical, whether to slow down the print speed for readability (default = FALSE).
#' @importFrom rstudioapi isAvailable getActiveDocumentContext
#' @importFrom clipr read_clip
#' @importFrom assertthat assert_that is.string is.count noNA
#' @return Console output of the identified R function, its package, and a brief description.
#' @export searchFunction
#' @author Satoshi Kume
#' @examples
#' \dontrun{
#' # To search for an R function related to "linear regression"
#' searchFunction(Summary_nch = 50, SelectedCode = FALSE)
#' }
#'
searchFunction <- function(Summary_nch = 100,
Model = "gpt-4-0613",
SelectedCode = TRUE,
verbose = TRUE,
SlowTone = FALSE){
# Get input either from RStudio or clipboard
if(SelectedCode){
assertthat::assert_that(rstudioapi::isAvailable())
input <- rstudioapi::getActiveDocumentContext()$selection[[1]]$text
} else {
input <- paste0(clipr::read_clip(), collapse = " \n")
}
if(verbose){
cat("\n", "searchFunction: ", "\n")
pb <- utils::txtProgressBar(min = 0, max = 3, style = 3)}
# Assertions to ensure proper argument types and settings
assertthat::assert_that(
assertthat::is.string(input),
assertthat::noNA(input),
assertthat::is.count(Summary_nch),
Sys.getenv("OPENAI_API_KEY") != ""
)
# Define the temperature parameter for the model
temperature = 1
if(verbose){utils::setTxtProgressBar(pb, 1)}
# Create a template for the model prompt
template = "
You are an excellent assistant and a highly skilled genius co-pilot of the R language.
You always look up the R function in relation to the input text.
You always provide the name of the R package, the name of the R function, and a brief description of the function in a professional and concise manner.
The output format must be the package name including the R function you mention, the function name, and the function description.
The language used is always the same as the input text.
"
# Create another template for the prompt including the limit on description characters
template1 = "
Please search the R function in relation to the following input and explain it in %s words.:
"
# Merge the input with the prompt template
template1s <- paste0(sprintf(template1, Summary_nch), paste0(input, collapse = " "), sep=" ")
# Create a history object for API call
history <- list(list('role' = 'system', 'content' = template),
list('role' = 'user', 'content' = template1s))
if(verbose){utils::setTxtProgressBar(pb, 2)}
# Execute the function that interacts with the API
res <- chat4R_history(history=history,
Model = Model,
temperature = temperature)
if(verbose){
utils::setTxtProgressBar(pb, 3)
cat("\n\n")}
# Print output conditionally based on 'verbose' and 'SlowTone'
if(verbose) {
if(SlowTone) {
d <- ifelse(20/nchar(res) < 0.3, 20/nchar(res), 0.3) * stats::runif(1, min = 0.95, max = 1.05)
slow_print_v2(res, delay = d)
} else {
d <- ifelse(10/nchar(res) < 0.15, 10/nchar(res), 0.15) * stats::runif(1, min = 0.95, max = 1.05)
slow_print_v2(res, delay = d)
}
}
}