-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
cluster_cache_tracker.go
699 lines (591 loc) · 26.3 KB
/
cluster_cache_tracker.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
/*
Copyright 2020 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package remote
import (
"context"
"crypto/rsa"
"fmt"
"net/http"
"os"
"sync"
"time"
"github.com/go-logr/logr"
"github.com/pkg/errors"
corev1 "k8s.io/api/core/v1"
apierrors "k8s.io/apimachinery/pkg/api/errors"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/runtime"
"k8s.io/apimachinery/pkg/runtime/serializer"
"k8s.io/apimachinery/pkg/types"
"k8s.io/apimachinery/pkg/util/sets"
"k8s.io/apimachinery/pkg/util/wait"
"k8s.io/client-go/kubernetes/scheme"
"k8s.io/client-go/rest"
"k8s.io/klog/v2"
ctrl "sigs.k8s.io/controller-runtime"
"sigs.k8s.io/controller-runtime/pkg/cache"
"sigs.k8s.io/controller-runtime/pkg/client"
"sigs.k8s.io/controller-runtime/pkg/client/apiutil"
"sigs.k8s.io/controller-runtime/pkg/handler"
"sigs.k8s.io/controller-runtime/pkg/log"
"sigs.k8s.io/controller-runtime/pkg/predicate"
"sigs.k8s.io/controller-runtime/pkg/source"
clusterv1 "sigs.k8s.io/cluster-api/api/v1beta1"
"sigs.k8s.io/cluster-api/util/certs"
"sigs.k8s.io/cluster-api/util/conditions"
)
const (
healthCheckPollInterval = 10 * time.Second
healthCheckRequestTimeout = 5 * time.Second
healthCheckUnhealthyThreshold = 10
initialCacheSyncTimeout = 5 * time.Minute
clusterCacheControllerName = "cluster-cache-tracker"
)
// ErrClusterLocked is returned in methods that require cluster-level locking
// if the cluster is already locked by another concurrent call.
var ErrClusterLocked = errors.New("cluster is locked already")
// ClusterCacheTracker manages client caches for workload clusters.
type ClusterCacheTracker struct {
log logr.Logger
clientUncachedObjects []client.Object
client client.Client
// SecretCachingClient is a client which caches secrets.
// If set it will be used to read the kubeconfig secret.
// Otherwise the default client from the manager will be used.
secretCachingClient client.Client
scheme *runtime.Scheme
// clusterAccessorsLock is used to lock the access to the clusterAccessors map.
clusterAccessorsLock sync.RWMutex
// clusterAccessors is the map of clusterAccessors by cluster.
clusterAccessors map[client.ObjectKey]*clusterAccessor
// clusterLock is a per-cluster lock used whenever we're locking for a specific cluster.
// E.g. for actions like creating a client or adding watches.
clusterLock *keyedMutex
indexes []Index
// controllerName is the name of the controller.
// This is used to calculate the user agent string.
controllerName string
// controllerPodMetadata is the Pod metadata of the controller using this ClusterCacheTracker.
// This is only set when the POD_NAMESPACE, POD_NAME and POD_UID environment variables are set.
// This information will be used to detected if the controller is running on a workload cluster, so
// that we can then access the apiserver directly.
controllerPodMetadata *metav1.ObjectMeta
}
// ClusterCacheTrackerOptions defines options to configure
// a ClusterCacheTracker.
type ClusterCacheTrackerOptions struct {
// SecretCachingClient is a client which caches secrets.
// If set it will be used to read the kubeconfig secret.
// Otherwise the default client from the manager will be used.
SecretCachingClient client.Client
// Log is the logger used throughout the lifecycle of caches.
// Defaults to a no-op logger if it's not set.
Log *logr.Logger
// ClientUncachedObjects instructs the Client to never cache the following objects,
// it'll instead query the API server directly.
// Defaults to never caching ConfigMap and Secret if not set.
ClientUncachedObjects []client.Object
Indexes []Index
// ControllerName is the name of the controller.
// This is used to calculate the user agent string.
// If not set, it defaults to "cluster-cache-tracker".
ControllerName string
}
func setDefaultOptions(opts *ClusterCacheTrackerOptions) {
if opts.Log == nil {
l := logr.New(log.NullLogSink{})
opts.Log = &l
}
if len(opts.ClientUncachedObjects) == 0 {
opts.ClientUncachedObjects = []client.Object{
&corev1.ConfigMap{},
&corev1.Secret{},
}
}
}
// NewClusterCacheTracker creates a new ClusterCacheTracker.
func NewClusterCacheTracker(manager ctrl.Manager, options ClusterCacheTrackerOptions) (*ClusterCacheTracker, error) {
setDefaultOptions(&options)
controllerName := options.ControllerName
if controllerName == "" {
controllerName = clusterCacheControllerName
}
var controllerPodMetadata *metav1.ObjectMeta
podNamespace := os.Getenv("POD_NAMESPACE")
podName := os.Getenv("POD_NAME")
podUID := os.Getenv("POD_UID")
if podNamespace != "" && podName != "" && podUID != "" {
options.Log.Info("Found controller pod metadata, the ClusterCacheTracker will try to access the cluster directly when possible")
controllerPodMetadata = &metav1.ObjectMeta{
Namespace: podNamespace,
Name: podName,
UID: types.UID(podUID),
}
} else {
options.Log.Info("Couldn't find controller pod metadata, the ClusterCacheTracker will always access clusters using the regular apiserver endpoint")
}
return &ClusterCacheTracker{
controllerName: controllerName,
controllerPodMetadata: controllerPodMetadata,
log: *options.Log,
clientUncachedObjects: options.ClientUncachedObjects,
client: manager.GetClient(),
secretCachingClient: options.SecretCachingClient,
scheme: manager.GetScheme(),
clusterAccessors: make(map[client.ObjectKey]*clusterAccessor),
clusterLock: newKeyedMutex(),
indexes: options.Indexes,
}, nil
}
// GetClient returns a cached client for the given cluster.
func (t *ClusterCacheTracker) GetClient(ctx context.Context, cluster client.ObjectKey) (client.Client, error) {
accessor, err := t.getClusterAccessor(ctx, cluster, t.indexes...)
if err != nil {
return nil, err
}
return accessor.client, nil
}
// GetRESTConfig returns a cached REST config for the given cluster.
func (t *ClusterCacheTracker) GetRESTConfig(ctc context.Context, cluster client.ObjectKey) (*rest.Config, error) {
accessor, err := t.getClusterAccessor(ctc, cluster, t.indexes...)
if err != nil {
return nil, err
}
return accessor.config, nil
}
// GetEtcdClientCertificateKey returns a cached certificate key to be used for generating certificates for accessing etcd in the given cluster.
func (t *ClusterCacheTracker) GetEtcdClientCertificateKey(ctx context.Context, cluster client.ObjectKey) (*rsa.PrivateKey, error) {
accessor, err := t.getClusterAccessor(ctx, cluster, t.indexes...)
if err != nil {
return nil, err
}
return accessor.etcdClientCertificateKey, nil
}
// clusterAccessor represents the combination of a delegating client, cache, and watches for a remote cluster.
type clusterAccessor struct {
cache *stoppableCache
client client.Client
watches sets.Set[string]
config *rest.Config
etcdClientCertificateKey *rsa.PrivateKey
}
// clusterAccessorExists returns true if a clusterAccessor exists for cluster.
func (t *ClusterCacheTracker) clusterAccessorExists(cluster client.ObjectKey) bool {
t.clusterAccessorsLock.RLock()
defer t.clusterAccessorsLock.RUnlock()
_, exists := t.clusterAccessors[cluster]
return exists
}
// loadAccessor loads a clusterAccessor.
func (t *ClusterCacheTracker) loadAccessor(cluster client.ObjectKey) (*clusterAccessor, bool) {
t.clusterAccessorsLock.RLock()
defer t.clusterAccessorsLock.RUnlock()
accessor, ok := t.clusterAccessors[cluster]
return accessor, ok
}
// storeAccessor stores a clusterAccessor.
func (t *ClusterCacheTracker) storeAccessor(cluster client.ObjectKey, accessor *clusterAccessor) {
t.clusterAccessorsLock.Lock()
defer t.clusterAccessorsLock.Unlock()
t.clusterAccessors[cluster] = accessor
}
// getClusterAccessor returns a clusterAccessor for cluster.
// It first tries to return an already-created clusterAccessor.
// It then falls back to create a new clusterAccessor if needed.
// If there is already another go routine trying to create a clusterAccessor
// for the same cluster, an error is returned.
func (t *ClusterCacheTracker) getClusterAccessor(ctx context.Context, cluster client.ObjectKey, indexes ...Index) (*clusterAccessor, error) {
log := ctrl.LoggerFrom(ctx, "cluster", klog.KRef(cluster.Namespace, cluster.Name))
// If the clusterAccessor already exists, return early.
if accessor, ok := t.loadAccessor(cluster); ok {
return accessor, nil
}
// clusterAccessor doesn't exist yet, we might have to initialize one.
// Lock on the cluster to ensure only one clusterAccessor is initialized
// for the cluster at the same time.
// Return an error if another go routine already tries to create a clusterAccessor.
if ok := t.clusterLock.TryLock(cluster); !ok {
return nil, errors.Wrapf(ErrClusterLocked, "failed to create cluster accessor: failed to get lock for cluster")
}
defer t.clusterLock.Unlock(cluster)
// Until we got the cluster lock a different goroutine might have initialized the clusterAccessor
// for this cluster successfully already. If this is the case we return it.
if accessor, ok := t.loadAccessor(cluster); ok {
return accessor, nil
}
// We are the go routine who has to initialize the clusterAccessor.
log.V(4).Info("Creating new cluster accessor")
accessor, err := t.newClusterAccessor(ctx, cluster, indexes...)
if err != nil {
return nil, errors.Wrap(err, "failed to create cluster accessor")
}
log.V(4).Info("Storing new cluster accessor")
t.storeAccessor(cluster, accessor)
return accessor, nil
}
// newClusterAccessor creates a new clusterAccessor.
func (t *ClusterCacheTracker) newClusterAccessor(ctx context.Context, cluster client.ObjectKey, indexes ...Index) (*clusterAccessor, error) {
log := ctrl.LoggerFrom(ctx)
// Get a rest config for the remote cluster.
// Use the secretCachingClient if set.
secretClient := t.client
if t.secretCachingClient != nil {
secretClient = t.secretCachingClient
}
config, err := RESTConfig(ctx, t.controllerName, secretClient, cluster)
if err != nil {
return nil, errors.Wrapf(err, "error fetching REST client config for remote cluster %q", cluster.String())
}
// Create a client and a cache for the cluster.
c, uncachedClient, cache, err := t.createClient(ctx, config, cluster, indexes)
if err != nil {
return nil, err
}
// Detect if the controller is running on the workload cluster.
// This function uses an uncached client to ensure pods aren't cached by the long-lived client.
runningOnCluster, err := t.runningOnWorkloadCluster(ctx, uncachedClient, cluster)
if err != nil {
return nil, err
}
// If the controller runs on the workload cluster, access the apiserver directly by using the
// CA and Host from the in-cluster configuration.
if runningOnCluster {
inClusterConfig, err := ctrl.GetConfig()
if err != nil {
return nil, errors.Wrapf(err, "error creating client for self-hosted cluster %q", cluster.String())
}
// Use CA and Host from in-cluster config.
config.CAData = nil
config.CAFile = inClusterConfig.CAFile
config.Host = inClusterConfig.Host
// Create a new client and overwrite the previously created client.
c, _, cache, err = t.createClient(ctx, config, cluster, indexes)
if err != nil {
return nil, errors.Wrap(err, "error creating client for self-hosted cluster")
}
log.Info(fmt.Sprintf("Creating cluster accessor for cluster %q with in-cluster service %q", cluster.String(), config.Host))
} else {
log.Info(fmt.Sprintf("Creating cluster accessor for cluster %q with the regular apiserver endpoint %q", cluster.String(), config.Host))
}
// Generating a new private key to be used for generating temporary certificates to connect to
// etcd on the target cluster.
// NOTE: Generating a private key is an expensive operation, so we store it in the cluster accessor.
etcdKey, err := certs.NewPrivateKey()
if err != nil {
return nil, errors.Wrapf(err, "error creating etcd client key for remote cluster %q", cluster.String())
}
return &clusterAccessor{
cache: cache,
config: config,
client: c,
watches: sets.Set[string]{},
etcdClientCertificateKey: etcdKey,
}, nil
}
// runningOnWorkloadCluster detects if the current controller runs on the workload cluster.
func (t *ClusterCacheTracker) runningOnWorkloadCluster(ctx context.Context, c client.Client, cluster client.ObjectKey) (bool, error) {
// Controller Pod metadata was not found, so we can't detect if we run on the workload cluster.
if t.controllerPodMetadata == nil {
return false, nil
}
// Try to get the controller pod.
var pod corev1.Pod
if err := c.Get(ctx, client.ObjectKey{
Namespace: t.controllerPodMetadata.Namespace,
Name: t.controllerPodMetadata.Name,
}, &pod); err != nil {
// If the controller pod is not found, we assume we are not running on the workload cluster.
if apierrors.IsNotFound(err) {
return false, nil
}
// If we got another error, we return the error so that this will be retried later.
return false, errors.Wrapf(err, "error checking if we're running on workload cluster %q", cluster.String())
}
// If the uid is the same we found the controller pod on the workload cluster.
return t.controllerPodMetadata.UID == pod.UID, nil
}
// createClient creates a cached client, and uncached client and a mapper based on a rest.Config.
func (t *ClusterCacheTracker) createClient(ctx context.Context, config *rest.Config, cluster client.ObjectKey, indexes []Index) (client.Client, client.Client, *stoppableCache, error) {
// Create a http client for the cluster.
httpClient, err := rest.HTTPClientFor(config)
if err != nil {
return nil, nil, nil, errors.Wrapf(err, "error creating client for remote cluster %q: error creating http client", cluster.String())
}
// Create a mapper for it
mapper, err := apiutil.NewDynamicRESTMapper(config, httpClient)
if err != nil {
return nil, nil, nil, errors.Wrapf(err, "error creating client for remote cluster %q: error creating dynamic rest mapper", cluster.String())
}
// Verify if we can get a rest mapping from the workload cluster apiserver.
// Note: This also checks if the apiserver is up in general. We do this already here
// to avoid further effort creating a cache and a client and to produce a clearer error message.
_, err = mapper.RESTMapping(corev1.SchemeGroupVersion.WithKind("Node").GroupKind(), corev1.SchemeGroupVersion.Version)
if err != nil {
return nil, nil, nil, errors.Wrapf(err, "error creating client for remote cluster %q: error getting rest mapping", cluster.String())
}
// Create the cache for the remote cluster
cacheOptions := cache.Options{
HTTPClient: httpClient,
Scheme: t.scheme,
Mapper: mapper,
}
remoteCache, err := cache.New(config, cacheOptions)
if err != nil {
return nil, nil, nil, errors.Wrapf(err, "error creating client for remote cluster %q: error creating cache", cluster.String())
}
cacheCtx, cacheCtxCancel := context.WithCancel(ctx)
// We need to be able to stop the cache's shared informers, so wrap this in a stoppableCache.
cache := &stoppableCache{
Cache: remoteCache,
cancelFunc: cacheCtxCancel,
}
for _, index := range indexes {
if err := cache.IndexField(ctx, index.Object, index.Field, index.ExtractValue); err != nil {
return nil, nil, nil, errors.Wrapf(err, "error adding index for field %q to cache for remote cluster %q", index.Field, cluster.String())
}
}
// Create the client for the remote cluster
cachedClient, err := client.New(config, client.Options{
Scheme: t.scheme,
Mapper: mapper,
HTTPClient: httpClient,
Cache: &client.CacheOptions{
Reader: cache,
DisableFor: t.clientUncachedObjects,
Unstructured: true,
},
})
if err != nil {
return nil, nil, nil, errors.Wrapf(err, "error creating client for remote cluster %q", cluster.String())
}
// Create an uncached client. This is used in `runningOnWorkloadCluster` to ensure we don't continuously cache
// pods in the client.
uncachedClient, err := client.New(config, client.Options{
Scheme: t.scheme,
Mapper: mapper,
HTTPClient: httpClient,
})
if err != nil {
return nil, nil, nil, errors.Wrapf(err, "error creating uncached client for remote cluster %q", cluster.String())
}
// Start the cache!!!
go cache.Start(cacheCtx) //nolint:errcheck
// Wait until the cache is initially synced
cacheSyncCtx, cacheSyncCtxCancel := context.WithTimeout(ctx, initialCacheSyncTimeout)
defer cacheSyncCtxCancel()
if !cache.WaitForCacheSync(cacheSyncCtx) {
cache.Stop()
return nil, nil, nil, fmt.Errorf("failed waiting for cache for remote cluster %v to sync: %w", cluster, cacheCtx.Err())
}
// Wrap the cached client with a client that sets timeouts on all Get and List calls
// If we don't set timeouts here Get and List calls can get stuck if they lazily create a new informer
// and the informer than doesn't sync because the workload cluster apiserver is not reachable.
// An alternative would be to set timeouts in the contexts we pass into all Get and List calls.
// It should be reasonable to have Get and List calls timeout within the duration configured in the restConfig.
cachedClient = newClientWithTimeout(cachedClient, config.Timeout)
// Start cluster healthcheck!!!
go t.healthCheckCluster(cacheCtx, &healthCheckInput{
cluster: cluster,
cfg: config,
httpClient: httpClient,
})
return cachedClient, uncachedClient, cache, nil
}
// deleteAccessor stops a clusterAccessor's cache and removes the clusterAccessor from the tracker.
func (t *ClusterCacheTracker) deleteAccessor(_ context.Context, cluster client.ObjectKey) {
t.clusterAccessorsLock.Lock()
defer t.clusterAccessorsLock.Unlock()
a, exists := t.clusterAccessors[cluster]
if !exists {
return
}
log := t.log.WithValues("Cluster", klog.KRef(cluster.Namespace, cluster.Name))
log.V(2).Info("Deleting clusterAccessor")
log.V(4).Info("Stopping cache")
a.cache.Stop()
log.V(4).Info("Cache stopped")
delete(t.clusterAccessors, cluster)
}
// Watcher is a scoped-down interface from Controller that only knows how to watch.
type Watcher interface {
// Watch watches src for changes, sending events to eventHandler if they pass predicates.
Watch(src source.Source, eventHandler handler.EventHandler, predicates ...predicate.Predicate) error
}
// WatchInput specifies the parameters used to establish a new watch for a remote cluster.
type WatchInput struct {
// Name represents a unique watch request for the specified Cluster.
Name string
// Cluster is the key for the remote cluster.
Cluster client.ObjectKey
// Watcher is the watcher (controller) whose Reconcile() function will be called for events.
Watcher Watcher
// Kind is the type of resource to watch.
Kind client.Object
// EventHandler contains the event handlers to invoke for resource events.
EventHandler handler.EventHandler
// Predicates is used to filter resource events.
Predicates []predicate.Predicate
}
// Watch watches a remote cluster for resource events. If the watch already exists based on input.Name, this is a no-op.
func (t *ClusterCacheTracker) Watch(ctx context.Context, input WatchInput) error {
if input.Name == "" {
return errors.New("input.Name is required")
}
accessor, err := t.getClusterAccessor(ctx, input.Cluster, t.indexes...)
if err != nil {
return errors.Wrapf(err, "failed to add %s watch on cluster %s", input.Kind, klog.KRef(input.Cluster.Namespace, input.Cluster.Name))
}
// We have to lock the cluster, so that the watch is not created multiple times in parallel.
ok := t.clusterLock.TryLock(input.Cluster)
if !ok {
return errors.Wrapf(ErrClusterLocked, "failed to add %T watch on cluster %s: failed to get lock for cluster", input.Kind, klog.KRef(input.Cluster.Namespace, input.Cluster.Name))
}
defer t.clusterLock.Unlock(input.Cluster)
if accessor.watches.Has(input.Name) {
log := ctrl.LoggerFrom(ctx)
log.V(6).Info("Watch already exists", "Cluster", klog.KRef(input.Cluster.Namespace, input.Cluster.Name), "name", input.Name)
return nil
}
// Need to create the watch
if err := input.Watcher.Watch(source.Kind(accessor.cache, input.Kind), input.EventHandler, input.Predicates...); err != nil {
return errors.Wrapf(err, "failed to add %s watch on cluster %s: failed to create watch", input.Kind, klog.KRef(input.Cluster.Namespace, input.Cluster.Name))
}
accessor.watches.Insert(input.Name)
return nil
}
// healthCheckInput provides the input for the healthCheckCluster method.
type healthCheckInput struct {
cluster client.ObjectKey
httpClient *http.Client
cfg *rest.Config
interval time.Duration
requestTimeout time.Duration
unhealthyThreshold int
path string
}
// setDefaults sets default values if optional parameters are not set.
func (h *healthCheckInput) setDefaults() {
if h.interval == 0 {
h.interval = healthCheckPollInterval
}
if h.requestTimeout == 0 {
h.requestTimeout = healthCheckRequestTimeout
}
if h.unhealthyThreshold == 0 {
h.unhealthyThreshold = healthCheckUnhealthyThreshold
}
if h.path == "" {
h.path = "/"
}
}
// healthCheckCluster will poll the cluster's API at the path given and, if there are
// `unhealthyThreshold` consecutive failures, will deem the cluster unhealthy.
// Once the cluster is deemed unhealthy, the cluster's cache is stopped and removed.
func (t *ClusterCacheTracker) healthCheckCluster(ctx context.Context, in *healthCheckInput) {
// populate optional params for healthCheckInput
in.setDefaults()
unhealthyCount := 0
// This gets us a client that can make raw http(s) calls to the remote apiserver. We only need to create it once
// and we can reuse it inside the polling loop.
codec := runtime.NoopEncoder{Decoder: scheme.Codecs.UniversalDecoder()}
cfg := rest.CopyConfig(in.cfg)
cfg.NegotiatedSerializer = serializer.NegotiatedSerializerWrapper(runtime.SerializerInfo{Serializer: codec})
restClient, restClientErr := rest.UnversionedRESTClientForConfigAndClient(cfg, in.httpClient)
runHealthCheckWithThreshold := func(ctx context.Context) (bool, error) {
if restClientErr != nil {
return false, restClientErr
}
cluster := &clusterv1.Cluster{}
if err := t.client.Get(ctx, in.cluster, cluster); err != nil {
if apierrors.IsNotFound(err) {
// If the cluster can't be found, we should delete the cache.
return false, err
}
// Otherwise, requeue.
return false, nil
}
if !cluster.Status.InfrastructureReady || !conditions.IsTrue(cluster, clusterv1.ControlPlaneInitializedCondition) {
// If the infrastructure or control plane aren't marked as ready, we should requeue and wait.
return false, nil
}
if _, ok := t.loadAccessor(in.cluster); !ok {
// If there is no accessor but the cluster is locked, we're probably in the middle of the cluster accessor
// creation and we should requeue the health check until it's done.
if ok := t.clusterLock.TryLock(in.cluster); !ok {
t.log.V(4).Info("Waiting for cluster to be unlocked. Requeuing health check")
return false, nil
}
t.clusterLock.Unlock(in.cluster)
// Cache for this cluster has already been cleaned up.
// Nothing to do, so return true.
return true, nil
}
// An error here means there was either an issue connecting or the API returned an error.
// If no error occurs, reset the unhealthy counter.
_, err := restClient.Get().AbsPath(in.path).Timeout(in.requestTimeout).DoRaw(ctx)
if err != nil {
if apierrors.IsUnauthorized(err) {
// Unauthorized means that the underlying kubeconfig is not authorizing properly anymore, which
// usually is the result of automatic kubeconfig refreshes, meaning that we have to throw away the
// clusterAccessor and rely on the creation of a new one (with a refreshed kubeconfig)
return false, err
}
unhealthyCount++
} else {
unhealthyCount = 0
}
if unhealthyCount >= in.unhealthyThreshold {
// Cluster is now considered unhealthy.
return false, err
}
return false, nil
}
err := wait.PollUntilContextCancel(ctx, in.interval, true, runHealthCheckWithThreshold)
// An error returned implies the health check has failed a sufficient number of times for the cluster
// to be considered unhealthy or the cache was stopped and thus the cache context canceled (we pass the
// cache context into wait.PollUntilContextCancel).
// NB. Log all errors that occurred even if this error might just be from a cancel of the cache context
// when the cache is stopped. Logging an error in this case is not a problem and makes debugging easier.
if err != nil {
t.log.Error(err, "Error health checking cluster", "Cluster", klog.KRef(in.cluster.Namespace, in.cluster.Name))
}
// Ensure in any case that the accessor is deleted (even if it is a no-op).
// NB. It is crucial to ensure the accessor was deleted, so it can be later recreated when the
// cluster is reachable again
t.deleteAccessor(ctx, in.cluster)
}
// newClientWithTimeout returns a new client which sets the specified timeout on all Get and List calls.
// If we don't set timeouts here Get and List calls can get stuck if they lazily create a new informer
// and the informer than doesn't sync because the workload cluster apiserver is not reachable.
// An alternative would be to set timeouts in the contexts we pass into all Get and List calls.
func newClientWithTimeout(client client.Client, timeout time.Duration) client.Client {
return clientWithTimeout{
Client: client,
timeout: timeout,
}
}
type clientWithTimeout struct {
client.Client
timeout time.Duration
}
var _ client.Client = &clientWithTimeout{}
func (c clientWithTimeout) Get(ctx context.Context, key client.ObjectKey, obj client.Object, opts ...client.GetOption) error {
ctx, cancel := context.WithTimeout(ctx, c.timeout)
defer cancel()
return c.Client.Get(ctx, key, obj, opts...)
}
func (c clientWithTimeout) List(ctx context.Context, list client.ObjectList, opts ...client.ListOption) error {
ctx, cancel := context.WithTimeout(ctx, c.timeout)
defer cancel()
return c.Client.List(ctx, list, opts...)
}