-
Notifications
You must be signed in to change notification settings - Fork 16
/
simulated_averaging.py
277 lines (253 loc) · 14.1 KB
/
simulated_averaging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
from torchvision import datasets, transforms
import os
import argparse
import pdb
import copy
import numpy as np
from torch.optim import lr_scheduler
from utils import *
from fl_trainer import *
from models.vgg import get_vgg_model
READ_CKPT=True
# helper function because otherwise non-empty strings
# evaluate as True
def bool_string(s):
if s not in {'False', 'True'}:
raise ValueError('Not a valid boolean string')
return s == 'True'
if __name__ == "__main__":
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=32, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=14, metavar='N',
help='number of epochs to train (default: 14)')
parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
help='learning rate (default: 1.0)')
parser.add_argument('--gamma', type=float, default=0.99, metavar='M',
help='Learning rate step gamma (default: 0.7)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--fraction', type=float or int, default=10,
help='how many fraction of poisoned data inserted')
parser.add_argument('--local_train_period', type=int, default=1,
help='number of local training epochs')
parser.add_argument('--num_nets', type=int, default=3383,
help='number of totally available users')
parser.add_argument('--part_nets_per_round', type=int, default=30,
help='number of participating clients per FL round')
parser.add_argument('--fl_round', type=int, default=100,
help='total number of FL round to conduct')
parser.add_argument('--fl_mode', type=str, default="fixed-freq",
help='fl mode: fixed-freq mode or fixed-pool mode')
parser.add_argument('--attacker_pool_size', type=int, default=100,
help='size of attackers in the population, used when args.fl_mode == fixed-pool only')
parser.add_argument('--defense_method', type=str, default="no-defense",
help='defense method used: no-defense|norm-clipping|norm-clipping-adaptive|weak-dp|krum|multi-krum|rfa|')
parser.add_argument('--device', type=str, default='cuda',
help='device to set, can take the value of: cuda or cuda:x')
parser.add_argument('--attack_method', type=str, default="blackbox",
help='describe the attack type: blackbox|pgd|graybox|')
parser.add_argument('--dataset', type=str, default='mnist',
help='dataset to use during the training process')
parser.add_argument('--model', type=str, default='lenet',
help='model to use during the training process')
parser.add_argument('--eps', type=float, default=5e-5,
help='specify the l_inf epsilon budget')
parser.add_argument('--norm_bound', type=float, default=3,
help='describe if there is defense method: no-defense|norm-clipping|weak-dp|')
parser.add_argument('--adversarial_local_training_period', type=int, default=5,
help='specify how many epochs the adversary should train for')
parser.add_argument('--poison_type', type=str, default='ardis',
help='specify source of data poisoning: |ardis|fashion|(for EMNIST) || |southwest|southwest+wow|southwest-da|greencar-neo|howto|(for CIFAR-10)')
parser.add_argument('--rand_seed', type=int, default=7,
help='random seed utilize in the experiment for reproducibility.')
parser.add_argument('--model_replacement', type=bool_string, default=False,
help='to scale or not to scale')
parser.add_argument('--project_frequency', type=int, default=10,
help='project once every how many epochs')
parser.add_argument('--adv_lr', type=float, default=0.02,
help='learning rate for adv in PGD setting')
parser.add_argument('--prox_attack', type=bool_string, default=False,
help='use prox attack')
parser.add_argument('--attack_case', type=str, default="edge-case",
help='attack case indicates wheather the honest nodes see the attackers poisoned data points: edge-case|normal-case|almost-edge-case')
parser.add_argument('--stddev', type=float, default=0.158,
help='choose std_dev for weak-dp defense')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
device = torch.device(args.device if use_cuda else "cpu")
"""
# hack to make stuff work on GD's machines
if torch.cuda.device_count() > 2:
device = 'cuda:4' if use_cuda else 'cpu'
#device = 'cuda:2' if use_cuda else 'cpu'
#device = 'cuda' if use_cuda else 'cpu'
else:
device = 'cuda' if use_cuda else 'cpu'
"""
logger.info("Running Attack of the tails with args: {}".format(args))
logger.info(device)
logger.info('==> Building model..')
torch.manual_seed(args.seed)
criterion = nn.CrossEntropyLoss()
# add random seed for the experiment for reproducibility
seed_experiment(seed=args.rand_seed)
import copy
# the hyper-params are inspired by the paper "Can you really backdoor FL?" (https://arxiv.org/pdf/1911.07963.pdf)
# partition_strategy = "homo"
partition_strategy = "hetero-dir"
net_dataidx_map = partition_data(
args.dataset, './data', partition_strategy,
args.num_nets, 0.5, args)
# rounds of fl to conduct
## some hyper-params here:
local_training_period = args.local_train_period #5 #1
adversarial_local_training_period = 5
# load poisoned dataset:
poisoned_train_loader, vanilla_test_loader, targetted_task_test_loader, num_dps_poisoned_dataset, clean_train_loader = load_poisoned_dataset(args=args)
# READ_CKPT = False
if READ_CKPT:
if args.model == "lenet":
net_avg = Net(num_classes=10).to(device)
with open("./checkpoint/emnist_lenet_10epoch.pt", "rb") as ckpt_file:
ckpt_state_dict = torch.load(ckpt_file, map_location=device)
elif args.model in ("vgg9", "vgg11", "vgg13", "vgg16"):
net_avg = get_vgg_model(args.model).to(device)
# net_avg = VGG(args.model.upper()).to(device)
# load model here
#with open("./checkpoint/trained_checkpoint_vanilla.pt", "rb") as ckpt_file:
with open("./checkpoint/Cifar10_{}_10epoch.pt".format(args.model.upper()), "rb") as ckpt_file:
ckpt_state_dict = torch.load(ckpt_file, map_location=device)
net_avg.load_state_dict(ckpt_state_dict)
logger.info("Loading checkpoint file successfully ...")
else:
if args.model == "lenet":
net_avg = Net(num_classes=10).to(device)
elif args.model in ("vgg9", "vgg11", "vgg13", "vgg16"):
net_avg = get_vgg_model(args.model).to(device)
logger.info("Test the model performance on the entire task before FL process ... ")
test(net_avg, device, vanilla_test_loader, test_batch_size=args.test_batch_size, criterion=criterion, mode="raw-task", dataset=args.dataset)
test(net_avg, device, targetted_task_test_loader, test_batch_size=args.test_batch_size, criterion=criterion, mode="targetted-task", dataset=args.dataset, poison_type=args.poison_type)
# let's remain a copy of the global model for measuring the norm distance:
vanilla_model = copy.deepcopy(net_avg)
if args.fl_mode == "fixed-freq":
arguments = {
#"poisoned_emnist_dataset":poisoned_emnist_dataset,
"vanilla_model":vanilla_model,
"net_avg":net_avg,
"net_dataidx_map":net_dataidx_map,
"num_nets":args.num_nets,
"dataset":args.dataset,
"model":args.model,
"part_nets_per_round":args.part_nets_per_round,
"fl_round":args.fl_round,
"local_training_period":args.local_train_period, #5 #1
"adversarial_local_training_period":args.adversarial_local_training_period,
"args_lr":args.lr,
"args_gamma":args.gamma,
"attacking_fl_rounds":[i for i in range(1, args.fl_round + 1) if (i-1)%10 == 0], #"attacking_fl_rounds":[i for i in range(1, fl_round + 1)], #"attacking_fl_rounds":[1],
#"attacking_fl_rounds":[i for i in range(1, args.fl_round + 1) if (i-1)%100 == 0], #"attacking_fl_rounds":[i for i in range(1, fl_round + 1)], #"attacking_fl_rounds":[1],
"num_dps_poisoned_dataset":num_dps_poisoned_dataset,
"poisoned_emnist_train_loader":poisoned_train_loader,
"clean_train_loader":clean_train_loader,
"vanilla_emnist_test_loader":vanilla_test_loader,
"targetted_task_test_loader":targetted_task_test_loader,
"batch_size":args.batch_size,
"test_batch_size":args.test_batch_size,
"log_interval":args.log_interval,
"defense_technique":args.defense_method,
"attack_method":args.attack_method,
"eps":args.eps,
"norm_bound":args.norm_bound,
"poison_type":args.poison_type,
"device":device,
"model_replacement":args.model_replacement,
"project_frequency":args.project_frequency,
"adv_lr":args.adv_lr,
"prox_attack":args.prox_attack,
"attack_case":args.attack_case,
"stddev":args.stddev,
}
frequency_fl_trainer = FrequencyFederatedLearningTrainer(arguments=arguments)
frequency_fl_trainer.run()
elif args.fl_mode == "fixed-pool":
arguments = {
#"poisoned_emnist_dataset":poisoned_emnist_dataset,
"vanilla_model":vanilla_model,
"net_avg":net_avg,
"net_dataidx_map":net_dataidx_map,
"num_nets":args.num_nets,
"dataset":args.dataset,
"model":args.model,
"part_nets_per_round":args.part_nets_per_round,
"attacker_pool_size":args.attacker_pool_size,
"fl_round":args.fl_round,
"local_training_period":args.local_train_period,
"adversarial_local_training_period":args.adversarial_local_training_period,
"args_lr":args.lr,
"args_gamma":args.gamma,
"num_dps_poisoned_dataset":num_dps_poisoned_dataset,
"poisoned_emnist_train_loader":poisoned_train_loader,
"clean_train_loader":clean_train_loader,
"vanilla_emnist_test_loader":vanilla_test_loader,
"targetted_task_test_loader":targetted_task_test_loader,
"batch_size":args.batch_size,
"test_batch_size":args.test_batch_size,
"log_interval":args.log_interval,
"defense_technique":args.defense_method,
"attack_method":args.attack_method,
"eps":args.eps,
"norm_bound":args.norm_bound,
"poison_type":args.poison_type,
"device":device,
"model_replacement":args.model_replacement,
"project_frequency":args.project_frequency,
"adv_lr":args.adv_lr,
"prox_attack":args.prox_attack,
"attack_case":args.attack_case,
"stddev":args.stddev,
}
fixed_pool_fl_trainer = FixedPoolFederatedLearningTrainer(arguments=arguments)
fixed_pool_fl_trainer.run()
# (old version) Depracated
# # prepare fashionMNIST dataset
# fashion_mnist_train_dataset = datasets.FashionMNIST('./data', train=True, download=True,
# transform=transforms.Compose([
# transforms.ToTensor(),
# transforms.Normalize((0.1307,), (0.3081,))
# ]))
# fashion_mnist_test_dataset = datasets.FashionMNIST('./data', train=False, transform=transforms.Compose([
# transforms.ToTensor(),
# transforms.Normalize((0.1307,), (0.3081,))
# ]))
# # prepare EMNIST dataset
# emnist_train_dataset = datasets.EMNIST('./data', split="digits", train=True, download=True,
# transform=transforms.Compose([
# transforms.ToTensor(),
# transforms.Normalize((0.1307,), (0.3081,))
# ]))
# emnist_test_dataset = datasets.EMNIST('./data', split="digits", train=False, transform=transforms.Compose([
# transforms.ToTensor(),
# transforms.Normalize((0.1307,), (0.3081,))
# ]))
# # okay, so what we really need here is just three loaders: i.e. poisoned training loader, poisoned test loader, normal test loader
# poisoned_emnist_train_loader = torch.utils.data.DataLoader(poisoned_emnist_dataset,
# batch_size=args.batch_size, shuffle=True, **kwargs)
# vanilla_emnist_test_loader = torch.utils.data.DataLoader(emnist_test_dataset,
# batch_size=args.test_batch_size, shuffle=False, **kwargs)
# targetted_task_test_loader = torch.utils.data.DataLoader(fashion_mnist_test_dataset,
# batch_size=args.test_batch_size, shuffle=False, **kwargs)