-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathcli.py
executable file
·237 lines (184 loc) · 7.03 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
"""Command line utility for PecanPy.
This is the command line interface for the ``pecanpy`` package.
Examples:
Run PecanPy in command line using ``PreComp`` mode to embed the karate network::
$ pecanpy --input demo/karate.edg --ouptut demo/karate.emb --mode PreComp
Checkout the full list of parameters by::
$ pecanpy --help
"""
import argparse
import numba
from pecanpy import node2vec
from pecanpy.wrappers import Timer
def parse_args():
"""Parse node2vec arguments."""
parser = argparse.ArgumentParser(
description="Run pecanpy, a parallelized, efficient, and accelerated Python implementataion of node2vec")
parser.add_argument("--input", nargs="?", default="graph/karate.edgelist", help="Input graph path")
parser.add_argument("--output", nargs="?", default="emb/karate.emb", help="Embeddings path")
parser.add_argument(
"--task",
nargs="?",
default="pecanpy",
help="Choose task: (pecanpy, todense). Default is pecanpy")
parser.add_argument(
"--mode",
nargs="?",
default="SparseOTF",
help="Choose mode: (PreComp, SparseOTF, DenseOTF). Default is SparseOTF")
parser.add_argument(
"--dimensions",
type=int,
default=128,
help="Number of dimensions. Default is 128.")
parser.add_argument(
"--walk-length",
type=int,
default=80,
help="Length of walk per source. Default is 80.")
parser.add_argument(
"--num-walks",
type=int,
default=10,
help="Number of walks per source. Default is 10.")
parser.add_argument(
"--window-size",
type=int,
default=10,
help="Context size for optimization. Default is 10. Support list of values")
parser.add_argument("--epochs", default=1, type=int,
help="Number of epochs in SGD when training Word2Vec")
parser.add_argument(
"--workers",
type=int,
default=8,
help="Number of parallel workers. Default is 8. Set to 0 to use all.")
parser.add_argument("--p", type=float, default=1, help="Return hyperparameter. Default is 1.")
parser.add_argument("--q", type=float, default=1, help="Inout hyperparameter. Default is 1.")
parser.add_argument(
"--weighted",
dest="weighted",
action="store_true",
help="Boolean specifying (un)weighted. Default is unweighted.")
parser.add_argument("--unweighted", dest="unweighted", action="store_false")
parser.set_defaults(weighted=False)
parser.add_argument(
"--directed",
dest="directed",
action="store_true",
help="Graph is (un)directed. Default is undirected.")
parser.add_argument("--undirected", dest="undirected", action="store_false")
parser.set_defaults(directed=False)
parser.add_argument(
"--verbose",
dest="verbose",
action="store_true",
help="Print out training details")
parser.set_defaults(verbose=False)
parser.add_argument(
"--extend",
dest="extend",
action="store_true",
help="Use node2vec+ extension")
parser.set_defaults(extend=False)
return parser.parse_args()
def check_mode(g, mode):
"""Check mode selection.
Give recommendation to user for pecanpy mode based on graph size and density.
"""
g_size = len(g.IDlst) # number of nodes in graph
if mode in ["PreComp", "SparseOTF"]:
edge_num = sum(len(i) for i in g.data) if type(g.data) == list else g.data.size
else:
edge_num = g.nonzero.sum()
g_dens = edge_num / g_size / (g_size - 1)
if (g_dens >= 0.2) & (mode != "DenseOTF"):
print(f"WARNING: network density = {g_dens:.3f} (> 0.2), recommend DenseOTF over {mode}")
if (g_dens < 0.001) & (g_size < 10000) & (mode != "PreComp"):
print(f"WARNING: network density = {g_dens:.2e} (< 0.001) with "
f"{g_size} nodes (< 10000), recommend PreComp over {mode}")
if (g_dens >= 0.001) & (g_dens < 0.2) & (mode != "SparseOTF"):
print(f"WARNING: network density = {g_dens:.3f}, recommend SparseOTF over {mode}")
if (g_dens < 0.001) & (g_size >= 10000) & (mode != "SparseOTF"):
print(f"WARNING: network density = {g_dens:.3f} (< 0.001) with "
f"{g_size} nodes (>= 10000), recommend SparseOTF over {mode}")
def read_graph(args):
"""Read input network to memory.
Depending on the mode selected, reads the network either in CSR representation
(``PreComp`` and ``SparseOTF``) or 2d numpy array (``DenseOTF``).
"""
fp = args.input
output = args.output
p = args.p
q = args.q
workers = args.workers
verbose = args.verbose
weighted = args.weighted
directed = args.directed
extend = args.extend
mode = args.mode
task = args.task
if task == "todense":
g = node2vec.DenseGraph()
g.read_edg(fp, weighted, directed)
g.save(output)
exit()
elif task != "pecanpy":
raise ValueError(f"Unknown task: {repr(task)}")
if mode == "PreComp":
g = node2vec.PreComp(p, q, workers, verbose, extend)
g.read_edg(fp, weighted, directed)
elif mode == "SparseOTF":
g = node2vec.SparseOTF(p, q, workers, verbose, extend)
g.read_edg(fp, weighted, directed)
elif mode == "DenseOTF":
g = node2vec.DenseOTF(p, q, workers, verbose, extend)
if fp.endswith(".npz"):
g.read_npz(fp, weighted, directed)
else:
g.read_edg(fp, weighted, directed)
else:
raise ValueError(f"Unkown mode: {repr(mode)}")
check_mode(g, mode)
if extend and not weighted:
print("WARNING: node2vec+ is equivalent to node2vec for unweighted graphs.")
return g
def learn_embeddings(args, walks):
"""Learn embeddings by optimizing the Skipgram objective using SGD."""
model = node2vec.Word2Vec(
walks,
vector_size=args.dimensions,
window=args.window_size,
min_count=0,
sg=1,
workers=args.workers,
epochs=args.epochs,
)
model.wv.save_word2vec_format(args.output)
def main():
"""Pipeline for representational learning for all nodes in a graph."""
args = parse_args()
if args.directed and args.extend:
raise NotImplementedError("Node2vec+ not implemented for directed graph yet.")
@Timer("load graph", True)
def timed_read_graph():
return read_graph(args)
@Timer("pre-compute transition probabilities", True)
def timed_preprocess():
g.preprocess_transition_probs()
@Timer("generate walks", True)
def timed_walk():
return g.simulate_walks(args.num_walks, args.walk_length)
@Timer("train embeddings", True)
def timed_emb():
learn_embeddings(args=args, walks=walks)
if args.workers == 0:
args.workers = numba.config.NUMBA_DEFAULT_NUM_THREADS
numba.set_num_threads(args.workers)
g = timed_read_graph()
timed_preprocess()
walks = timed_walk()
g = None
timed_emb()
if __name__ == "__main__":
main()