-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathApp.py
144 lines (119 loc) · 4.84 KB
/
App.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
'''
░█████╗░██████╗░██████╗░
██╔══██╗██╔══██╗██╔══██╗
███████║██████╔╝██████╔╝
██╔══██║██╔═══╝░██╔═══╝░
██║░░██║██║░░░░░██║░░░░░
╚═╝░░╚═╝╚═╝░░░░░╚═╝░░░░░
'''
import sys
from pyspark import SparkContext, SparkConf
from pyspark.sql import SparkSession
from pyspark import SparkFiles # access submited files
datafolder = "/opt/spark/data"
sys.path.append(datafolder)
# import pytorch_DGCNN from data folder of spark distribution
from pytorch_DGCNN.predictor import *
from pytorch_DGCNN.util import GNNGraph
from pytorch_DGCNN.Logger import getlogger
from utils_app import application_args, parse_args, print_usage
from utils_app import save_prediction_results
from utils_extraction import *
import pickle as pkl
import numpy as np
import time
import scipy.io as sio
import math
import gc
def apply_network(dataset:str, serialized):
hyperparams_route = SparkFiles.get(f'{dataset}_hyper.pkl')
model_route = SparkFiles.get(f'{dataset}_model.pth')
predictor = Predictor(hyperparams_route, model_route)
return predictor.predict(serialized)
def read_line(line) -> tuple:
pair = line.strip().split(" ")
src, dst = int(pair[0]), int(pair[1])
return (src, dst)
def transform_to_list(l):
pairs, subgraphs, _ = map(list, zip(*l))
batch_poses = [[], []]
for pair in pairs:
batch_poses[0].append(pair[0])
batch_poses[1].append(pair[1])
return pkl.dumps((subgraphs, batch_poses))
def main(args):
'''
█ █▄░█ █ ▀█▀ █ ▄▀█ █░░ █ █▀ ▄▀█ ▀█▀ █ █▀█ █▄░█
█ █░▀█ █ ░█░ █ █▀█ █▄▄ █ ▄█ █▀█ ░█░ █ █▄█ █░▀█
'''
spark = SparkSession\
.builder\
.appName("UginDGCNN")\
.getOrCreate()
sc = spark.sparkContext
logger = getlogger('Node '+str(os.getpid()))
logger.info("Application params:\n" + args.print_attributes())
'''
█▀▄ █▀▀ █▀█ █▀▀ █▄░█ █▀▄ █▀▀ █▄░█ █▀▀ █ █▀▀ █▀
█▄▀ ██▄ █▀▀ ██▄ █░▀█ █▄▀ ██▄ █░▀█ █▄▄ █ ██▄ ▄█
'''
zipped_pkg = os.path.join(datafolder, "dependencies.zip")
assert os.path.exists(zipped_pkg)
sc.addPyFile(zipped_pkg)
hyperparams = os.path.join(datafolder, f"models/{args.dataset}_hyper.pkl")
assert os.path.exists(hyperparams)
sc.addFile(hyperparams)
model = os.path.join(datafolder, f"models/{args.dataset}_model.pth")
assert os.path.exists(model)
sc.addFile(model)
build = os.path.join(datafolder, "build")
build_paths = [\
os.path.join(build, "dll/libgnn.d"),\
os.path.join(build, "dll/libgnn.so"),\
os.path.join(build, "lib/config.d"),\
os.path.join(build, "lib/config.o"),\
os.path.join(build, "lib/graph_struct.d"),\
os.path.join(build, "lib/graph_struct.o"),\
os.path.join(build, "lib/msg_pass.d"),\
os.path.join(build, "lib/msg_pass.o")\
]
for build_path in build_paths:
assert os.path.exists(build_path)
sc.addFile(build_path)
if not args.hdfs_read:
testfile = os.path.join(datafolder, "prediction_data", f"{args.dataset}_{str(args.links)}.txt")
assert os.path.exists(testfile)
sc.addFile(testfile)
datafile = os.path.join(datafolder, f'prediction_data/{args.dataset}.mat')
assert os.path.exists(datafile)
A = sio.loadmat(datafile)['net'] # graph
logger.info("Build paths attached...")
'''
█▀█ █▀█ █▀▀ █▀▄ █ █▀▀ ▀█▀ █ █▀█ █▄░█
█▀▀ █▀▄ ██▄ █▄▀ █ █▄▄ ░█░ █ █▄█ █░▀█
'''
testfile = args.get_hdfs_data_path() if args.hdfs_read else testfile
lines = args.links if args.links > 0 else sc.textFile(testfile).count()
partitions = math.ceil(float(lines)/float(args.batch_size))
prediction_data = sc.textFile(testfile, minPartitions=partitions) \
.map(lambda line: read_line(line)) \
.map(lambda pair: link2subgraph(pair, args.hop, A)) \
.glom() \
.map(lambda p: transform_to_list(p)) \
.map(lambda graph: apply_network(args.dataset, graph))
start = time.time()
# trigger execution by calling an action
results = prediction_data.collect()
end = time.time()
logger.info(f"Prediction completed in {str(end-start)} seconds...")
logger.info("Saving results...")
save_prediction_results(results, end-start, args)
logger.info(f"Results saved under: {args.get_hdfs_folder_path()}")
if __name__ == "__main__":
args = sys.argv
# exclude app name
args.pop(0)
# adapt arguments
args = parse_args(args)
# execute
main(args)