-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathopt_trace.py
211 lines (188 loc) · 7.93 KB
/
opt_trace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import numpy as np
import numpy.linalg as la
import matplotlib.pyplot as plt
import os
from pathlib import Path
import pickle
import warnings
class Trace:
"""
Stores the logs of running an optimization method
and plots the trajectory.
"""
def __init__(self, loss):
self.loss = loss
self.xs = []
self.ts = []
self.its = []
self.loss_vals = []
self.its_converted_to_epochs = False
self.ls_its = None
def compute_loss_of_iterates(self):
if len(self.loss_vals) == 0:
self.loss_vals = np.asarray([self.loss.value(x) for x in self.xs])
else:
print('Loss values have already been computed. Set .loss_vals = [] to recompute')
def convert_its_to_epochs(self, batch_size=1):
if self.its_converted_to_epochs:
warnings.warn('The iteration count has already been converted to epochs.')
return
its_per_epoch = self.loss.n / batch_size
self.its = np.asarray(self.its) / its_per_epoch
self.its_converted_to_epochs = True
def plot_losses(self, its=None, f_opt=None, markevery=None, ls_its=False, *args, **kwargs):
if its is None:
its = self.ls_its if ls_its and self.ls_its is not None else self.its
if len(self.loss_vals) == 0:
self.compute_loss_of_iterates()
if f_opt is None:
f_opt = self.loss.f_opt
if markevery is None:
markevery = max(1, len(self.loss_vals)//20)
plt.plot(its, self.loss_vals - f_opt, markevery=markevery, *args, **kwargs)
plt.ylabel(r'$f(x)-f^*$')
def plot_distances(self, its=None, x_opt=None, markevery=None, ls_its=False, *args, **kwargs):
if its is None:
its = self.ls_its if ls_its and self.ls_its is not None else self.its
if x_opt is None:
if self.loss.x_opt is None:
x_opt = self.xs[-1]
else:
x_opt = self.loss.x_opt
if markevery is None:
markevery = max(1, len(self.xs)//20)
dists = [self.loss.norm(x-x_opt)**2 for x in self.xs]
its = self.ls_its if ls_its and self.ls_its else self.its
plt.plot(its, dists, markevery=markevery, *args, **kwargs)
plt.ylabel(r'$\Vert x-x^*\Vert^2$')
@property
def best_loss_value(self):
if len(self.loss_vals) == 0:
self.compute_loss_of_iterates()
return np.min(self.loss_vals)
def save(self, file_name, path='./results/'):
# To make the dumped file smaller, remove the loss
loss_ref_copy = self.loss
self.loss = None
Path(path).mkdir(parents=True, exist_ok=True)
with open(path + file_name, 'wb') as f:
pickle.dump(self, f)
self.loss = loss_ref_copy
@classmethod
def from_pickle(cls, path, loss=None):
if not os.path.isfile(path):
return None
with open(path, 'rb') as f:
trace = pickle.load(f)
trace.loss = loss
if loss is not None:
loss.f_opt = min(self.best_loss_value, loss.f_opt)
return trace
class StochasticTrace:
"""
Class that stores the logs of running a stochastic
optimization method and plots the trajectory.
"""
def __init__(self, loss):
self.loss = loss
self.xs_all = {}
self.ts_all = {}
self.its_all = {}
self.loss_vals_all = {}
self.its_converted_to_epochs = False
self.loss_is_computed = False
def init_seed(self):
self.xs = []
self.ts = []
self.its = []
self.loss_vals = None
def append_seed_results(self, seed):
self.xs_all[seed] = self.xs.copy()
self.ts_all[seed] = self.ts.copy()
self.its_all[seed] = self.its.copy()
self.loss_vals_all[seed] = self.loss_vals.copy() if self.loss_vals else None
def compute_loss_of_iterates(self):
for seed, loss_vals in self.loss_vals_all.items():
if loss_vals is None:
self.loss_vals_all[seed] = np.asarray([self.loss.value(x) for x in self.xs_all[seed]])
else:
print("""Loss values for seed {} have already been computed.
Set .loss_vals_all[{}] = [] to recompute""".format(seed, seed))
self.loss_is_computed = True
@property
def best_loss_value(self):
if not self.loss_is_computed:
self.compute_loss_of_iterates()
return np.min([np.min(loss_vals) for loss_vals in self.loss_vals_all.values()])
def convert_its_to_epochs(self, batch_size=1):
if self.its_converted_to_epochs:
return
its_per_epoch = self.loss.n / batch_size
for seed, its in self.its_all.items():
self.its_all[seed] = np.asarray(its) / its_per_epoch
self.its = np.asarray(self.its) / its_per_epoch
self.its_converted_to_epochs = True
def plot_losses(self, its=None, f_opt=None, log_std=True, markevery=None, alpha=0.25, *args, **kwargs):
if not self.loss_is_computed:
self.compute_loss_of_iterates()
if its is None:
its = np.mean([np.asarray(its_) for its_ in self.its_all.values()], axis=0)
if f_opt is None:
f_opt = self.loss.f_opt
if log_std:
y_log = [np.log(loss_vals-f_opt) for loss_vals in self.loss_vals_all.values()]
y_log_ave = np.mean(y_log, axis=0)
y_log_std = np.std(y_log, axis=0)
lower, upper = np.exp(y_log_ave - y_log_std), np.exp(y_log_ave + y_log_std)
y_ave = np.exp(y_log_ave)
else:
y = [loss_vals-f_opt for loss_vals in self.loss_vals_all.values()]
y_ave = np.mean(y, axis=0)
y_std = np.std(y, axis=0)
lower, upper = y_ave - y_std, y_ave + y_std
if markevery is None:
markevery = max(1, len(y_ave)//20)
plot = plt.plot(its, y_ave, markevery=markevery, *args, **kwargs)
if len(self.loss_vals_all.keys()) > 1:
plt.fill_between(its, lower, upper, alpha=alpha, color=plot[0].get_color())
plt.ylabel(r'$f(x)-f^*$')
def plot_distances(self, its=None, x_opt=None, log_std=True, markevery=None, alpha=0.25, *args, **kwargs):
if its is None:
its = np.mean([np.asarray(its_) for its_ in self.its_all.values()], axis=0)
if x_opt is None:
if self.loss.x_opt is None:
x_opt = self.xs[-1]
else:
x_opt = self.loss.x_opt
dists = [np.asarray([self.loss.norm(x-x_opt)**2 for x in xs]) for xs in self.xs_all.values()]
if log_std:
y_log = [np.log(dist) for dist in dists]
y_log_ave = np.mean(y_log, axis=0)
y_log_std = np.std(y_log, axis=0)
lower, upper = np.exp(y_log_ave - y_log_std), np.exp(y_log_ave + y_log_std)
y_ave = np.exp(y_log_ave)
else:
y = dists
y_ave = np.mean(y, axis=0)
y_std = np.std(y, axis=0)
lower, upper = y_ave - y_std, y_ave + y_std
if markevery is None:
markevery = max(1, len(y_ave)//20)
plot = plt.plot(its, y_ave, markevery=markevery, *args, **kwargs)
if len(self.loss_vals_all.keys()) > 1:
plt.fill_between(it_ave, lower, upper, alpha=alpha, color=plot[0].get_color())
plt.ylabel(r'$\Vert x-x^*\Vert^2$')
def save(self, file_name, path='./results/'):
self.loss = None
Path(path).mkdir(parents=True, exist_ok=True)
f = open(path + file_name, 'wb')
pickle.dump(self, f)
f.close()
@classmethod
def from_pickle(cls, path, loss):
if not os.path.isfile(path):
return None
with open(path, 'rb') as f:
trace = pickle.load(f)
trace.loss = loss
return trace