-
Notifications
You must be signed in to change notification settings - Fork 99
SPARSE 3::spadd
Luc Berger edited this page Jun 24, 2020
·
13 revisions
Header File: KokkosSparse_spadd.hpp
Usage: KokkosSparse::spadd_symbolic(handle, a, b, c);
Usage: KokkosSparse::spadd_numeric (handle, alpha, a, beta, b, c);
Add two sparse matrices.
template <typename KernelHandle,
typename AMatrix,
typename BMatrix,
typename CMatrix>
void spadd_symbolic(
KernelHandle* handle,
const AMatrix& A,
const BMatrix& B,
CMatrix& C);
template <typename KernelHandle,
typename AScalar,
typename AMatrix,
typename BScalar,
typename BMatrix,
typename CMatrix>
void spadd_numeric(
KernelHandle* handle,
const AScalar alpha,
const AMatrix& A,
const BScalar beta,
const BMatrix& B,
CMatrix& C);
spadd_symbolic
- KernelHandle
- InputMatrixRowMap: A rank-1
Kokkos::View
- InputMatrixEntries: A rank-1
Kokkos::View
- InputMatrixRowMap: A rank-1
Kokkos::View
- InputMatrixEntries: A rank-1
Kokkos::View
- Input/OutputRowMap: A rank-1
Kokkos::View
with non-const data type.
spadd_numeric
- KernelHandle
- InputMatrixRowMap: A rank-1
Kokkos::View
- InputMatrixEntries: A rank-1
Kokkos::View
- InputMatrixValues: A rank-1
Kokkos::View
- InputScalarType: Scalar multiplier for first input matrix
- InputMatrixRowMap: A rank-1
Kokkos::View
- InputMatrixEntries: A rank-1
Kokkos::View
- InputMatrixValues: A rank-1
Kokkos::View
- InputScalarType: Scalar multiplier for second input matrix
- Input/OutputRowMap: A rank-1
Kokkos::View
with non-const data type. - Input/OutputEntries: A rank-1
Kokkos::View
with non-const data type. - Input/OutputValues: A rank-1
Kokkos::View
with non-const data type.
- Creation of a
KernelHandle
Matrix::value_type == Matrix::non_const_value_type
#include<Kokkos_Core.hpp>
#include<KokkosSparse_CrsMatrix.hpp>
#include<KokkosSparse_spadd.hpp>
int main(int argc, char* argv[]) {
Kokkos::initialize();
int numRows = atoi(argv[1]);
typedef scalar_t double;
typedef lno_t int;
typedef Kokkos::DefaultExecutionSpace Device;
typedef typename KokkosSparse::CrsMatrix<scalar_t, lno_t, Device> crsMat_t;
typedef typename crsMat_t::size_type size_t;
typedef typename crsMat_t::row_map_type::non_const_type row_map_type;
typedef typename crsMat_t::index_type::non_const_type entries_type;
typedef typename crsMat_t::values_type::non_const_type values_type;
// Now create and fill crsMat_t matrices A and B
// ...
// Create a KokkosKernelsHandle
typedef typename KokkosKernels::Experimental::KokkosKernelsHandle<size_type, lno_t, scalar_t,
typename Device::execution_space, typename Device::memory_space, typename Device::memory_space> KernelHandle;
KernelHandle handle;
handle.create_spadd_handle(false);
auto addHandle = handle.get_spadd_handle();
// Create View components for result crsMat_t matrix C
row_map_type c_row_map("C row map", numRows + 1);
KokkosSparse::Experimental::spadd_symbolic<
KernelHandle,
typename row_map_type::const_type,
typename entries_type::const_type,
typename row_map_type::const_type,
typename entries_type::const_type,
row_map_type,
entries_type>
(&handle, A.graph.row_map, A.graph.entries, B.graph.row_map, B.graph.entries, c_row_map);
values_type c_values("C values", addHandle->get_max_result_nnz());
entries_type c_entries("C entries", addHandle->get_max_result_nnz());
KokkosSparse::Experimental::spadd_numeric<
KernelHandle,
typename row_map_type::const_type,
typename entries_type::const_type,
scalar_t, typename values_type::const_type,
typename row_map_type::const_type,
typename entries_type::const_type,
scalar_t, typename values_type::const_type,
row_map_type, entries_type, values_type>
(&handle, A.graph.row_map, A.graph.entries, A.values, 1,
B.graph.row_map, B.graph.entries, B.values, 1,
c_row_map, c_entries, c_values);
// Create a CrsMatrix to store the resultant matrix C
crsMat_t C("C", numRows, numRows, addHandle->get_max_result_nnz(), c_values, c_row_map, c_entries);
// Destroy the handle
handle.destroy_spadd_handle();
Kokkos::finalize();
}