-
Notifications
You must be signed in to change notification settings - Fork 99
/
Kokkos_ArithTraits.hpp
3678 lines (3485 loc) · 126 KB
/
Kokkos_ArithTraits.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
//@HEADER
// ************************************************************************
//
// KokkosKernels 0.9: Linear Algebra and Graph Kernels
// Copyright 2017 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Siva Rajamanickam (srajama@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#ifndef KOKKOS_ARITHTRAITS_HPP
#define KOKKOS_ARITHTRAITS_HPP
/// \file Kokkos_ArithTraits.hpp
/// \brief Declaration and definition of Kokkos::Details::ArithTraits
#include <KokkosKernels_config.h>
#include <Kokkos_Complex.hpp>
#ifdef HAVE_KOKKOSKERNELS_QUADMATH
# include <quadmath.h>
#endif // HAVE_KOKKOSKERNELS_QUADMATH
#include <cfloat>
#include <climits>
#include <cmath>
#include <complex> // std::complex
#include <limits> // std::numeric_limits
#ifdef __CUDACC__
# include <math_constants.h>
#endif
//
// mfh 24 Dec 2013: Temporary measure for testing; will go away.
//
#ifndef KOKKOS_FORCEINLINE_FUNCTION
# ifdef __CUDA_ARCH__
# define KOKKOS_FORCEINLINE_FUNCTION inline __host__ __device__
# else
# define KOKKOS_FORCEINLINE_FUNCTION
# endif // __CUDA_ARCH__
#endif // KOKKOS_FORCEINLINE_FUNCTION
namespace { // anonymous
/// \fn intPowImpl
/// \tparam IntType A built-in integer type.
/// \brief Implementation of intPowSigned and intPowUnsigned.
///
/// \pre x != 0
/// \pre y > 0
///
/// Use intPowSigned or intPowUnsigned for general y.
template<class IntType>
KOKKOS_FORCEINLINE_FUNCTION IntType
intPowImpl (const IntType x, const IntType y)
{
// Recursion (unrolled into while loop): pow(x, 2y) = (x^y)^2
IntType prod = x;
IntType y_cur = 1;
// If y == 1, then prod stays x.
while (y_cur < y) {
prod = prod * prod;
y_cur = y_cur << 1;
}
// abs(y - y_cur) < floor(log2(y)), so it won't hurt asymptotic run
// time to finish the remainder in a linear iteration.
if (y > y_cur) {
const IntType left = y - y_cur;
for (IntType k = 0; k < left; ++k) {
prod = prod * x;
}
}
else if (y < y_cur) {
// There's probably a better way to do this in order to avoid the
// (expensive) integer division, but I'm not motivated to think of
// it at the moment.
const IntType left = y_cur - y;
for (IntType k = 0; k < left; ++k) {
prod = prod / x;
}
}
return prod;
// y = 8:
//
// x,1 -> x^2,2
// x^2,2 -> x^4,4
// x^4,4 -> x^8,8
//
// y = 9:
//
// x,1 -> x^2,2
// x^2,2 -> x^4,4
// x^4,4 -> x^8,8
//
// y - y_cur is what's left over. Just do it one at a time.
//
// y = 3:
// x,1 -> x^2,2
// x^2,2 -> x^4,4
}
// Warning free abs function for types where we don't know whether they are signed (like char)
template<class T, bool is_signed = std::numeric_limits<T>::is_signed >
struct integer_abs {
static
KOKKOS_INLINE_FUNCTION
T abs(const T& val);
};
template<class T>
struct integer_abs<T,true> {
static
KOKKOS_INLINE_FUNCTION
T abs(const T& x) {
return x<0? -x:x;
}
};
template<class T>
struct integer_abs<T,false> {
static
KOKKOS_INLINE_FUNCTION
T abs(const T& x) {
return x;
}
};
/// \fn intPowSigned
/// \tparam IntType A built-in signed integer type.
/// \brief Compute x raised to the power y.
///
/// If the arguments are invalid (e.g., if x and y are both zero), the
/// result of this function is undefined. However, this function will
/// not throw an exception in that case.
template<class IntType>
KOKKOS_FORCEINLINE_FUNCTION
typename std::enable_if<std::numeric_limits<IntType>::is_signed,IntType>::type
intPowSigned (const IntType x, const IntType y)
{
// It's not entirely clear what to return if x and y are both zero.
// In the case of floating-point numbers, 0^0 is NaN. Here, though,
// I think it's safe to return 0.
if (x == 0) {
return 0;
} else if (y == 0) {
return 1;
} else if (y < 0) {
if (x == 1) {
return 1;
}
else if (x == -1) {
return (y % 2 == 0) ? 1 : -1;
}
else {
return 0; // round the fraction to zero
}
}
return intPowImpl<IntType> (x, y);
}
template<class IntType>
KOKKOS_FORCEINLINE_FUNCTION
typename std::enable_if<!std::numeric_limits<IntType>::is_signed,IntType>::type
intPowSigned (const IntType x, const IntType y)
{
// It's not entirely clear what to return if x and y are both zero.
// In the case of floating-point numbers, 0^0 is NaN. Here, though,
// I think it's safe to return 0.
if (x == 0) {
return 0;
} else if (y == 0) {
return 1;
}
return intPowImpl<IntType> (x, y);
}
/// \fn intPowUnsigned
/// \tparam IntType A built-in unsigned integer type.
/// \brief Compute x raised to the power y.
///
/// If the arguments are invalid (e.g., if x and y are both zero), the
/// result of this function is undefined. However, this function will
/// not throw an exception in that case.
template<class IntType>
KOKKOS_FORCEINLINE_FUNCTION IntType
intPowUnsigned (const IntType x, const IntType y)
{
// It's not entirely clear what to return if x and y are both zero.
// In the case of floating-point numbers, 0^0 is NaN. Here, though,
// I think it's safe to return 0.
if (x == 0) {
return 0;
} else if (y == 0) {
return 1;
} else {
return intPowImpl<IntType> (x, y);
}
}
// It might make sense to use special sqrt() approximations for
// integer arguments, like those presented on the following web site:
//
// http://www.azillionmonkeys.com/qed/sqroot.html#implementations
//
// Note that some of the implementations on the above page break ANSI
// C(++) aliasing rules (by assigning to the results of
// reinterpret_cast-ing between int and float). It's also just a
// performance optimization and not required for a reasonable
// implementation.
} // namespace (anonymous)
namespace Kokkos {
namespace Details {
/// \class ArithTraits
/// \brief Traits class for arithmetic on type T.
/// \tparam T "Scalar" type of interest
///
/// This is a traits class for the "arithmetic" type T. "Arithmetic
/// types" include built-in signed and unsigned integer types,
/// floating-point types, complex-valued types, and anything else that
/// looks like these. This class is useful for implementing numerical
/// algorithms that are generic on the data type. You may also use
/// this class to query attributes of T, like whether it is signed or
/// complex, or its precision.
///
/// We really did not want to implement this class or expose it to
/// users. It would be much better to use existing traits classes
/// like std::numeric_limits. We decided to implement and expose this
/// class for the following reasons:
/// <ol>
/// <li> std::numeric_limits class methods cannot be used in CUDA
/// device functions, since they themselves are not device
/// functions </li>
/// <li> Existing traits classes like std::numeric_limits do not
/// provide enough information to implement algorithms that are
/// agnostic of whether T is real-valued or complex-valued. </li>
/// </ol>
///
/// All class methods must be suitable for parallel kernels, if the
/// type T itself is suitable for parallel kernels. In particular,
/// specializations for types T that make sense to use on a CUDA
/// device must mark all class methods as device (and host) functions,
/// using the KOKKOS_FORCEINLINE_FUNCTION macro. All class methods must be
/// callable both inside and outside a parallel kernel (for CUDA, this
/// means they must be marked as both device and host functions).
///
/// \section Kokkos_ArithTraits_compat Compatibility
///
/// Whenever possible, class methods in ArithTraits use the same names
/// as their equivalents in the C++ Standard Library. If this was not
/// possible, for example with isInf and isNan, we explain why in
/// their documentation.
///
/// This class has redundant typedefs and methods in order to maintain
/// backwards compatibility with Teuchos::ScalarTraits, while
/// preferring forwards (partial) compatibility with
/// std::numeric_limits. Users should prefer typedefs, \c bool
/// constants, and class methods compatible with std::numeric_limits,
/// to those from Teuchos::ScalarTraits. The latter may go away at
/// any time. Furthermore, Teuchos::ScalarTraits contains methods
/// that do not make sense for use as parallel device functions, in
/// particular those relating to pseudorandom number generation that
/// refer to hidden state, so we will never include all class methods
/// from Teuchos::ScalarTraits in ArithTraits.
///
/// \section Kokkos_ArithTraits_unsupp Unsupported types on CUDA devices
///
/// CUDA does not support long double or std::complex<T> in device
/// functions. ArithTraits does have specializations for these types,
/// but the class methods therein are not marked as device functions.
///
/// \section Kokkos_ArithTraits_whyNotC99 What about C99 integer types?
///
/// C99 and C++11 include typedefs int${N}_t and uint${N}_t, where N
/// is the number of bits in the integer. These typedefs are useful
/// because they make the length of the type explicit. Users are
/// welcome to use these types as the template parameter of
/// ArithTraits.
///
/// We chose not to use these types when <i>defining</i> full
/// specializations of ArithTraits. This is because the C99 integer
/// types are typedefs, not types in themselves. This makes it
/// impossible to avoid duplicate or missing full specializations of
/// ArithTraits. For example, on my Mac, for CUDA 5.5, gcc 4.2.1, and
/// Clang 3.2, <tt>int64_t</tt> is a typedef of <tt>long long</tt>,
/// but <tt>long long</tt> and <tt>long</tt> are separate types, even
/// though they have the same length (64 bits). In contrast, on
/// Windows (even Win64), <tt>long</tt> is a 32-bit type (but a
/// distinct type from <tt>int</tt>), and <tt>long long</tt> is a
/// 64-bit type. Thus, if we define full specializations of
/// ArithTraits using <i>only</i> the C99 integer types, we will be
/// missing a specialization for <tt>long</tt> on at least one
/// platform.
///
/// Rather than trouble ourselves with trying to figure this out for
/// each platform, we decided to provide specializations only for the
/// integer types in the C89 and C++03 language standards. This
/// includes signed and unsigned versions of <tt>char</tt>,
/// <tt>short</tt>, <tt>int</tt>, and <tt>long</tt>. We also include
/// <tt>long long</tt> if your platform supports it. We may thus have
/// left out some C99 integer type, but this is only possible if the
/// C89 / C++03 integer types do not have complete coverage of all
/// powers of two bits from 8 up to the longest provided length (e.g.,
/// 64 on a 64-bit system). On all platforms I have encountered,
/// <tt>char</tt> has 8 bits and <tt>short</tt> has 16 bits, so I am
/// not worried about missing specializations for <tt>int16_t</tt> or
/// <tt>uint16_t</tt>. If you should find that either of these
/// specializations are missing, though, please let us know.
///
/// Note that <tt>char</tt>, <tt>signed char</tt>, and <tt>unsigned
/// char</tt> are distinct types, whether <tt>char</tt> is signed or
/// unsigned. (The language standards do not specify whether
/// <tt>char</tt> is signed or unsigned.) That is, <tt>char</tt> is
/// <i>not</i> a typedef of <tt>signed char</tt> or <tt>unsigned
/// char</tt>. This is why we provide full specializations of
/// ArithTraits for each of these types. Interestingly enough, on my
/// system, <tt>char</tt> and <tt>int8_t</tt> are different types, but
/// <tt>signed char</tt> and <tt>int8_t</tt> are the same.
///
/// \section Kokkos_ArithTraits_impl Implementation notes
///
/// This section contains notes to developers who which to add a
/// partial specialization of this class for a new type T. If you
/// decide to write a default templated implementation, it must not
/// declare any methods as device functions. This ensures correct
/// behavior for arbitrary T, but does require specializations for
/// common types like T = float and double, as well as for other types
/// T that make sense to use on a CUDA device.
template<class T>
class ArithTraits {
public:
/// \brief A type that acts like T and works with Kokkos.
///
/// This is usually just an alias for T. However, some types T do
/// not work well with Kokkos. In that case, we use a mostly
/// equivalent type here. For example, ArithTraits<std::complex<R>
/// >::val_type is Kokkos::complex<R>.
typedef T val_type;
/// \brief The type of the magnitude (absolute value) of T.
///
/// We define this as the type returned by abs() in this class. If
/// T is real (not complex), then \c val_type and \c mag_type are
/// usually the same. If T is <tt>std::complex<R></tt> for some R,
/// then R and \c mag_type are usually the same.
typedef T mag_type;
//! Whether ArithTraits has a specialization for T.
static const bool is_specialized = false;
//! Whether T is a signed type (has negative values).
static const bool is_signed = false;
//! Whether T is an integer type.
static const bool is_integer = false;
/// \brief Whether T "uses exact representations."
///
/// The opposite of is_exact is "is approximate," that is, "may
/// commit rounding error."
static const bool is_exact = false;
//! Whether T is a complex-valued type.
static const bool is_complex = false;
/// \brief Whether x is Inf.
///
/// This can only be true for floating-point types T that support
/// Inf. If T is a complex type, we say that a T instance x is Inf
/// if and only if <tt>isinf(real(x)) || isinf(imag(x))</tt>.
///
/// Unfortunately we can't call this "isinf" (the equivalent C99
/// function), because CUDA appears to implement that function using
/// a macro, rather than using a function (as C++11 requires).
static KOKKOS_FORCEINLINE_FUNCTION bool isInf (const T& x);
/// \brief Whether x is NaN (not a number).
///
/// This can only be true for floating-point types T that support
/// NaN. If T is a complex type, we say that a T instance x is NaN
/// if and only if <tt>isNan(real(x)) || isNan(imag(x))</tt>.
///
/// Unfortunately we can't call this "isnan" (the equivalent C99
/// function), because CUDA appears to implement that function using
/// a macro, rather than using a function (as C++11 requires).
static KOKKOS_FORCEINLINE_FUNCTION bool isNan (const T& x);
//! The absolute value (magnitude) of x.
static KOKKOS_FORCEINLINE_FUNCTION mag_type abs (const T& x);
//! The zero value of T; the arithmetic identity.
static KOKKOS_FORCEINLINE_FUNCTION T zero ();
//! The one value of T; the multiplicative identity.
static KOKKOS_FORCEINLINE_FUNCTION T one ();
/// \brief The minimum possible value of T.
///
/// If T is a real floating-point type, then this is the minimum
/// <i>positive</i> value, as with std::numeric_limits<T>::min().
static KOKKOS_FORCEINLINE_FUNCTION T min ();
//! The maximum possible value of T.
static KOKKOS_FORCEINLINE_FUNCTION T max ();
/// \brief The real part of x.
///
/// If \c is_complex is false, then this just returns x.
static KOKKOS_FORCEINLINE_FUNCTION mag_type real (const T& x);
/// \brief The imaginary part of x.
///
/// If \c is_complex is false, then this just returns zero().
static KOKKOS_FORCEINLINE_FUNCTION mag_type imag (const T&);
/// \brief The complex conjugate of x.
///
/// If \c is_complex is false, then this just returns x.
static KOKKOS_FORCEINLINE_FUNCTION T conj (const T&);
//! x raised to the power y.
static KOKKOS_FORCEINLINE_FUNCTION T pow (const T& x, const T& y);
/// \brief The square root of x.
///
/// If T is an integer type, this is the floor of the square root.
/// If T is a complex-valued type, then this method returns the
/// principal branch of the square root.
///
/// If T is real-valued and x is negative, the result of the square
/// root is undefined in general. (CUDA does not allow throwing
/// exceptions in device functions.) Implementations should return
/// NaN if the type T supports this. Of course, in that case, the
/// square of the result will not equal x.
static KOKKOS_FORCEINLINE_FUNCTION T sqrt (const T& x);
/// \brief The cubic root of x.
///
/// If T is an integer type, this is the floor of the cubic root.
/// If T is a complex-valued type, then this method returns the
/// principal branch of the cubic root.
///
/// If T is real-valued and x is negative, the result of the cubic
/// root is undefined in general. (CUDA does not allow throwing
/// exceptions in device functions.) Implementations should return
/// NaN if the type T supports this. Of course, in that case, the
/// cubic of the result will not equal x.
static KOKKOS_FORCEINLINE_FUNCTION T cbrt (const T& x);
/// \brief The natural (base e) exponential function of x.
///
/// If T is an integer type, this is the floor of the exponential
/// function. If T is a complex-valued type, then this method
/// returns \f$e^{x+iy} = e^x ( cos(y) + i sin(y) )\f$.
///
static KOKKOS_FORCEINLINE_FUNCTION T exp (const T& x);
/// \brief The natural (base e) logarithm of x.
///
/// If T is an integer type, this is the floor of the logarithm. If
/// T is a complex-valued type, then this method returns the
/// principal branch of the logarithm.
///
/// If T is real-valued and x is negative, the result of the
/// logarithm is undefined in general. (CUDA does not allow
/// throwing exceptions in device functions.) Implementations
/// should return NaN if the type T supports this. Of course, in
/// that case, if y is the result, \f$e^y\f$ will not equal x.
static KOKKOS_FORCEINLINE_FUNCTION T log (const T& x);
/// \brief The base ten logarithm of the input.
///
/// If T is an integer type, this is the floor of the logarithm. If
/// T is a complex-valued type, then this method returns the
/// principal branch of the logarithm.
///
/// If T is real-valued and x is negative, the result of the
/// logarithm is undefined in general. (CUDA does not allow
/// throwing exceptions in device functions.) Implementations
/// should return NaN if the type T supports this. Of course, in
/// that case, if y is the result, \f$10^y\f$ will not equal x.
static KOKKOS_FORCEINLINE_FUNCTION T log10 (const T& x);
/// Trigonometric and hyperbolic functions are not available
/// for integer types. This is because asin(sin(x)) is not x
/// when x is integer with a rounding error.
///
/// KJ: log, exp also has this problem. We probably need to
/// disable them for integer types instead of providing
/// functionality with floor.
/// \brief The sin function of x
///
static KOKKOS_FORCEINLINE_FUNCTION T sin (const T& x);
/// \brief The cos function of x
///
static KOKKOS_FORCEINLINE_FUNCTION T cos (const T& x);
/// \brief The tan function of x
///
static KOKKOS_FORCEINLINE_FUNCTION T tan (const T& x);
/// \brief The sin hyperbolic function of x
///
static KOKKOS_FORCEINLINE_FUNCTION T sinh (const T& x);
/// \brief The cos hyperbolic function of x
///
static KOKKOS_FORCEINLINE_FUNCTION T cosh (const T& x);
/// \brief The tan hyperbolic function of x
///
static KOKKOS_FORCEINLINE_FUNCTION T tanh (const T& x);
/// \brief The asin function of x
///
static KOKKOS_FORCEINLINE_FUNCTION T asin (const T& x);
/// \brief The acos function of x
///
static KOKKOS_FORCEINLINE_FUNCTION T acos (const T& x);
/// \brief The atan function of x
///
static KOKKOS_FORCEINLINE_FUNCTION T atan (const T& x);
/// \brief Return a silent NaN, if appropriate for T.
///
/// If T does <i>not</i> implement a silent NaN, the return value is
/// undefined, but calling this method is still allowed.
static KOKKOS_FORCEINLINE_FUNCTION T nan ();
/// \brief Machine epsilon.
///
/// If T is an integer type (std::numeric_traits<T>::is_exact is
/// true), then epsilon() returns 0. Otherwise, if T is a
/// floating-point type, it returns machine epsilon that T.
static KOKKOS_FORCEINLINE_FUNCTION mag_type epsilon ();
//@{
/// \name Traits defined for backwards compatibility with Teuchos::ScalarTraits
///
/// All of the typedefs, \c bool constants, and class methods in
/// this section are defined in order that one may replace most uses
/// of Teuchos::ScalarTraits with ArithTraits. Users who do not
/// have this backwards compatibility requirement should prefer
/// equivalents in other sections. Those class methods which have
/// the same name and meaning in both Teuchos::ScalarTraits and this
/// class, such as log() and pow(), are not in this section.
//! Same as mag_type; the type of the absolute value (magnitude) of T.
typedef T magnitudeType;
/// \brief The type with "half the precision" of T.
///
/// This typedef only makes sense if T is a floating-point type.
typedef T halfPrecision;
/// \brief The type with "twice the the precision" of T.
///
/// This typedef only makes sense if T is a floating-point type.
typedef T doublePrecision;
static const bool isComplex = false;
static const bool isOrdinal = false;
static const bool isComparable = false;
/// \brief True if this type T has floating-point parameters.
///
/// This is true if and only if this specialization of ArithTraits
/// has "machine-specific" parameters eps(), sfmin(), base(),
/// prec(), t(), rnd(), emin(), rmin(), emax(), and rmax(), relating
/// to floating-point types.
static const bool hasMachineParameters = false;
//! Return relative machine precision.
static KOKKOS_FORCEINLINE_FUNCTION mag_type eps ();
//! Return safe minimum (sfmin), such that 1/sfmin does not overflow.
static KOKKOS_FORCEINLINE_FUNCTION mag_type sfmin ();
//! Return the base of the scalar type T.
static KOKKOS_FORCEINLINE_FUNCTION int base ();
//! Return <tt>eps*base</tt>.
static KOKKOS_FORCEINLINE_FUNCTION mag_type prec ();
//! Returns the number of (base) digits in the significand.
static KOKKOS_FORCEINLINE_FUNCTION int t ();
//! 1.0 when rounding occurs in addition, else 0.0.
static KOKKOS_FORCEINLINE_FUNCTION mag_type rnd ();
//! Returns the minimum exponent before (gradual) underflow.
static KOKKOS_FORCEINLINE_FUNCTION int emin ();
//! Returns the underflow threshold: <tt>base^(emin-1)</tt>
static KOKKOS_FORCEINLINE_FUNCTION mag_type rmin ();
//! Returns the largest exponent before overflow.
static KOKKOS_FORCEINLINE_FUNCTION int emax ();
//! Overflow theshold: <tt>(base^emax)*(1-eps)</tt>
static KOKKOS_FORCEINLINE_FUNCTION mag_type rmax ();
//! Same as abs(); return the magnitude of x.
static KOKKOS_FORCEINLINE_FUNCTION magnitudeType magnitude (const T& x);
//! Same as conj(); return the complex conjugate of x.
static KOKKOS_FORCEINLINE_FUNCTION T conjugate (const T& x);
/// \brief Whether x is (silent) NaN or Inf.
///
/// This is the same as <tt>isNan(x) || isInf(x)</tt>.
static KOKKOS_FORCEINLINE_FUNCTION bool isnaninf (const T& x);
/// \brief The string name of T.
///
/// Note that this is not a device function.
static std::string name ();
//! Same as sqrt(x); the square root of x.
static KOKKOS_FORCEINLINE_FUNCTION T squareroot (const T& x);
//@}
};
template<>
class ArithTraits<float> {
public:
typedef float val_type;
typedef val_type mag_type;
static const bool is_specialized = true;
static const bool is_signed = true;
static const bool is_integer = false;
static const bool is_exact = false;
static const bool is_complex = false;
static KOKKOS_FORCEINLINE_FUNCTION bool isInf (const float x) {
#ifndef __CUDA_ARCH__
using std::isinf;
#endif
return isinf (x);
}
static KOKKOS_FORCEINLINE_FUNCTION bool isNan (const float x) {
#ifndef __CUDA_ARCH__
using std::isnan;
#endif
return isnan (x);
}
static KOKKOS_FORCEINLINE_FUNCTION mag_type abs (const float x) {
return ::fabs (x);
}
static KOKKOS_FORCEINLINE_FUNCTION float zero () {
return 0.0;
}
static KOKKOS_FORCEINLINE_FUNCTION float one () {
return 1.0;
}
static KOKKOS_FORCEINLINE_FUNCTION float min () {
return -FLT_MAX;
}
static KOKKOS_FORCEINLINE_FUNCTION float max () {
return FLT_MAX;
}
static KOKKOS_FORCEINLINE_FUNCTION mag_type real (const float x) {
return x;
}
static KOKKOS_FORCEINLINE_FUNCTION mag_type imag (const float) {
return 0.0;
}
static KOKKOS_FORCEINLINE_FUNCTION float conj (const float x) {
return x;
}
static KOKKOS_FORCEINLINE_FUNCTION float pow (const float x, const float y) {
return ::pow (x, y);
}
static KOKKOS_FORCEINLINE_FUNCTION float sqrt (const float x) {
return ::sqrt (x);
}
static KOKKOS_FORCEINLINE_FUNCTION float cbrt (const float x) {
return ::cbrt (x);
}
static KOKKOS_FORCEINLINE_FUNCTION float exp (const float x) {
return ::exp (x);
}
static KOKKOS_FORCEINLINE_FUNCTION float log (const float x) {
return ::log (x);
}
static KOKKOS_FORCEINLINE_FUNCTION float log10 (const float x) {
return ::log10 (x);
}
static KOKKOS_FORCEINLINE_FUNCTION float sin (const float x) {
return ::sin (x);
}
static KOKKOS_FORCEINLINE_FUNCTION float cos (const float x) {
return ::cos (x);
}
static KOKKOS_FORCEINLINE_FUNCTION float tan (const float x) {
return ::tan (x);
}
static KOKKOS_FORCEINLINE_FUNCTION float sinh (const float x) {
return ::sinh (x);
}
static KOKKOS_FORCEINLINE_FUNCTION float cosh (const float x) {
return ::cosh (x);
}
static KOKKOS_FORCEINLINE_FUNCTION float tanh (const float x) {
return ::tanh (x);
}
static KOKKOS_FORCEINLINE_FUNCTION float asin (const float x) {
return ::asin (x);
}
static KOKKOS_FORCEINLINE_FUNCTION float acos (const float x) {
return ::acos (x);
}
static KOKKOS_FORCEINLINE_FUNCTION float atan (const float x) {
return ::atan (x);
}
static KOKKOS_FORCEINLINE_FUNCTION mag_type epsilon () {
return FLT_EPSILON;
}
// Backwards compatibility with Teuchos::ScalarTraits.
typedef mag_type magnitudeType;
// C++ doesn't have a standard "half-float" type.
typedef float halfPrecision;
typedef double doublePrecision;
static const bool isComplex = false;
static const bool isOrdinal = false;
static const bool isComparable = true;
static const bool hasMachineParameters = true;
static KOKKOS_FORCEINLINE_FUNCTION bool isnaninf (const float x) {
return isNan (x) || isInf (x);
}
static KOKKOS_FORCEINLINE_FUNCTION magnitudeType magnitude (const float x) {
return abs (x);
}
static KOKKOS_FORCEINLINE_FUNCTION float conjugate (const float x) {
return conj (x);
}
static std::string name () {
return "float";
}
static KOKKOS_FORCEINLINE_FUNCTION float squareroot (const float x) {
return sqrt (x);
}
static KOKKOS_FORCEINLINE_FUNCTION float nan () {
#ifdef __CUDA_ARCH__
return CUDART_NAN_F;
//return nan (); //this returns 0???
#else
return std::numeric_limits<float>::quiet_NaN();
#endif // __CUDA_ARCH__
}
static KOKKOS_FORCEINLINE_FUNCTION mag_type eps () {
return epsilon ();
}
static KOKKOS_FORCEINLINE_FUNCTION mag_type sfmin () {
return FLT_MIN; // ???
}
static KOKKOS_FORCEINLINE_FUNCTION int base () {
return FLT_RADIX;
}
static KOKKOS_FORCEINLINE_FUNCTION mag_type prec () {
return eps () * static_cast<mag_type> (base ());
}
static KOKKOS_FORCEINLINE_FUNCTION int t () {
return FLT_MANT_DIG;
}
static KOKKOS_FORCEINLINE_FUNCTION mag_type rnd () {
return 1.0;
}
static KOKKOS_FORCEINLINE_FUNCTION int emin () {
return FLT_MIN_EXP;
}
static KOKKOS_FORCEINLINE_FUNCTION mag_type rmin () {
return FLT_MIN; // ??? // should be base^(emin-1)
}
static KOKKOS_FORCEINLINE_FUNCTION int emax () {
return FLT_MAX_EXP;
}
static KOKKOS_FORCEINLINE_FUNCTION mag_type rmax () {
return FLT_MAX; // ??? // should be (base^emax)*(1-eps)
}
};
/// \brief Partial specialization for std::complex<RealFloatType>.
///
/// The C++ Standard Library (with C++03 at least) only allows
/// std::complex<RealFloatType> for RealFloatType = float, double, or
/// long double.
template<class RealFloatType>
class ArithTraits<std::complex<RealFloatType> > {
public:
//! Kokkos internally replaces std::complex with Kokkos::complex.
typedef ::Kokkos::complex<RealFloatType> val_type;
typedef RealFloatType mag_type;
static const bool is_specialized = true;
static const bool is_signed = true;
static const bool is_integer = false;
static const bool is_exact = false;
static const bool is_complex = true;
static bool isInf (const std::complex<RealFloatType>& x) {
#ifndef __CUDA_ARCH__
using std::isinf;
#endif
return isinf (real (x)) || isinf (imag (x));
}
static bool isNan (const std::complex<RealFloatType>& x) {
#ifndef __CUDA_ARCH__
using std::isnan;
#endif
return isnan (real (x)) || isnan (imag (x));
}
static mag_type abs (const std::complex<RealFloatType>& x) {
return std::abs (x);
}
static std::complex<RealFloatType> zero () {
return std::complex<RealFloatType> (ArithTraits<mag_type>::zero (), ArithTraits<mag_type>::zero ());
}
static std::complex<RealFloatType> one () {
return std::complex<RealFloatType> (ArithTraits<mag_type>::one (), ArithTraits<mag_type>::zero ());
}
static std::complex<RealFloatType> min () {
return std::complex<RealFloatType> (ArithTraits<mag_type>::min (), ArithTraits<mag_type>::zero ());
}
static std::complex<RealFloatType> max () {
return std::complex<RealFloatType> (ArithTraits<mag_type>::max (), ArithTraits<mag_type>::zero ());
}
static mag_type real (const std::complex<RealFloatType>& x) {
return std::real (x);
}
static mag_type imag (const std::complex<RealFloatType>& x) {
return std::imag (x);
}
static std::complex<RealFloatType> conj (const std::complex<RealFloatType>& x) {
return std::conj (x);
}
static std::complex<RealFloatType>
pow (const std::complex<RealFloatType>& x, const std::complex<RealFloatType>& y) {
// Fix for some weird gcc 4.2.1 inaccuracy.
if (y == one ()) {
return x;
} else if (y == one () + one ()) {
return x * x;
} else {
return std::pow (x, y);
}
}
static std::complex<RealFloatType>
pow (const std::complex<RealFloatType>& x, const RealFloatType & y) {
// Fix for some weird gcc 4.2.1 inaccuracy.
if (y == ArithTraits<RealFloatType>::one ()) {
return x;
} else if (y == ArithTraits<RealFloatType>::one () + ArithTraits<RealFloatType>::one ()) {
return x * x;
} else {
return std::pow (x, y);
}
}
static std::complex<RealFloatType> sqrt (const std::complex<RealFloatType>& x) {
return std::sqrt (x);
}
static std::complex<RealFloatType> cbrt (const std::complex<RealFloatType>& x) {
return std::cbrt (x);
}
static std::complex<RealFloatType> exp (const std::complex<RealFloatType>& x) {
return std::exp (x);
}
static std::complex<RealFloatType> log (const std::complex<RealFloatType>& x) {
return std::log (x);
}
static std::complex<RealFloatType> log10 (const std::complex<RealFloatType>& x) {
return std::log10 (x);
}
static std::complex<RealFloatType> sin (const std::complex<RealFloatType>& x) {
return std::sin (x);
}
static std::complex<RealFloatType> cos (const std::complex<RealFloatType>& x) {
return std::cos (x);
}
static std::complex<RealFloatType> tan (const std::complex<RealFloatType>& x) {
return std::tan (x);
}
static std::complex<RealFloatType> sinh (const std::complex<RealFloatType>& x) {
return std::sinh (x);
}
static std::complex<RealFloatType> cosh (const std::complex<RealFloatType>& x) {
return std::cosh (x);
}
static std::complex<RealFloatType> tanh (const std::complex<RealFloatType>& x) {
return std::tanh (x);
}
static std::complex<RealFloatType> asin (const std::complex<RealFloatType>& x) {
return std::asin (x);
}
static std::complex<RealFloatType> acos (const std::complex<RealFloatType>& x) {
return std::acos (x);
}
static std::complex<RealFloatType> atan (const std::complex<RealFloatType>& x) {
return std::atan (x);
}
static std::complex<RealFloatType> nan () {
const mag_type mag_nan = ArithTraits<mag_type>::nan ();
return std::complex<RealFloatType> (mag_nan, mag_nan);
}
static mag_type epsilon () {
return ArithTraits<mag_type>::epsilon ();
}
// Backwards compatibility with Teuchos::ScalarTraits.
typedef mag_type magnitudeType;
typedef std::complex<typename ArithTraits<mag_type>::halfPrecision> halfPrecision;
typedef std::complex<typename ArithTraits<mag_type>::doublePrecision> doublePrecision;
static const bool isComplex = true;
static const bool isOrdinal = false;
static const bool isComparable = false;
static const bool hasMachineParameters = true;
static bool isnaninf (const std::complex<RealFloatType>& x) {
return isNan (x) || isInf (x);
}
static mag_type magnitude (const std::complex<RealFloatType>& x) {
return abs (x);
}
static std::complex<RealFloatType> conjugate (const std::complex<RealFloatType>& x) {
return conj (x);
}
static std::string name () {
return std::string ("std::complex<") + ArithTraits<mag_type>::name () + ">";
}
static std::complex<RealFloatType> squareroot (const std::complex<RealFloatType>& x) {
return sqrt (x);
}
static mag_type eps () {
return epsilon ();
}
static mag_type sfmin () {
return ArithTraits<mag_type>::sfmin ();
}
static int base () {
return ArithTraits<mag_type>::base ();
}
static mag_type prec () {
return ArithTraits<mag_type>::prec ();
}
static int t () {
return ArithTraits<mag_type>::t ();
}
static mag_type rnd () {
return ArithTraits<mag_type>::one ();
}
static int emin () {
return ArithTraits<mag_type>::emin ();
}
static mag_type rmin () {
return ArithTraits<mag_type>::rmin ();
}
static int emax () {
return ArithTraits<mag_type>::emax ();