forked from madhavthaker/text_summarization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathskipthoughts.py
440 lines (356 loc) · 13.3 KB
/
skipthoughts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
'''
Skip-thought vectors
'''
import os
import theano
import theano.tensor as tensor
import cPickle as pkl
import numpy
import copy
import nltk
from collections import OrderedDict, defaultdict
from scipy.linalg import norm
from nltk.tokenize import word_tokenize
profile = False
#-----------------------------------------------------------------------------#
# Specify model and table locations here
#-----------------------------------------------------------------------------#
path_to_models = '/content/'
path_to_tables = '/content/'
#-----------------------------------------------------------------------------#
path_to_umodel = path_to_models + 'uni_skip.npz'
path_to_bmodel = path_to_models + 'bi_skip.npz'
def load_model():
"""
Load the model with saved tables
"""
# Load model options
print('Loading model parameters...')
with open('%s.pkl'%path_to_umodel, 'rb') as f:
uoptions = pkl.load(f)
with open('%s.pkl'%path_to_bmodel, 'rb') as f:
boptions = pkl.load(f)
# Load parameters
uparams = init_params(uoptions)
uparams = load_params(path_to_umodel, uparams)
utparams = init_tparams(uparams)
bparams = init_params_bi(boptions)
bparams = load_params(path_to_bmodel, bparams)
btparams = init_tparams(bparams)
# Extractor functions
print('Compiling encoders...')
embedding, x_mask, ctxw2v = build_encoder(utparams, uoptions)
f_w2v = theano.function([embedding, x_mask], ctxw2v, name='f_w2v')
embedding, x_mask, ctxw2v = build_encoder_bi(btparams, boptions)
f_w2v2 = theano.function([embedding, x_mask], ctxw2v, name='f_w2v2')
# Tables
print('Loading tables...')
utable, btable = load_tables()
# Store everything we need in a dictionary
print('Packing up...')
model = {}
model['uoptions'] = uoptions
model['boptions'] = boptions
model['utable'] = utable
model['btable'] = btable
model['f_w2v'] = f_w2v
model['f_w2v2'] = f_w2v2
return model
def load_tables():
"""
Load the tables
"""
words = []
utable = numpy.load(path_to_tables + 'utable.npy')
btable = numpy.load(path_to_tables + 'btable.npy')
f = open(path_to_tables + 'dictionary.txt', 'rb')
for line in f:
words.append(line.decode('utf-8').strip())
f.close()
utable = OrderedDict(zip(words, utable))
btable = OrderedDict(zip(words, btable))
return utable, btable
class Encoder(object):
"""
Sentence encoder.
"""
def __init__(self, model):
self._model = model
def encode(self, X, use_norm=True, verbose=True, batch_size=128, use_eos=False):
"""
Encode sentences in the list X. Each entry will return a vector
"""
return encode(self._model, X, use_norm, verbose, batch_size, use_eos)
def encode(model, X, use_norm=True, verbose=True, batch_size=128, use_eos=False):
"""
Encode sentences in the list X. Each entry will return a vector
"""
# first, do preprocessing
X = preprocess(X)
# word dictionary and init
d = defaultdict(lambda : 0)
for w in model['utable'].keys():
d[w] = 1
ufeatures = numpy.zeros((len(X), model['uoptions']['dim']), dtype='float32')
bfeatures = numpy.zeros((len(X), 2 * model['boptions']['dim']), dtype='float32')
# length dictionary
ds = defaultdict(list)
captions = [s.split() for s in X]
for i,s in enumerate(captions):
ds[len(s)].append(i)
# Get features. This encodes by length, in order to avoid wasting computation
for k in ds.keys():
if verbose:
print(k)
numbatches = len(ds[k]) / batch_size + 1
for minibatch in range(numbatches):
caps = ds[k][minibatch::numbatches]
if use_eos:
uembedding = numpy.zeros((k+1, len(caps), model['uoptions']['dim_word']), dtype='float32')
bembedding = numpy.zeros((k+1, len(caps), model['boptions']['dim_word']), dtype='float32')
else:
uembedding = numpy.zeros((k, len(caps), model['uoptions']['dim_word']), dtype='float32')
bembedding = numpy.zeros((k, len(caps), model['boptions']['dim_word']), dtype='float32')
for ind, c in enumerate(caps):
caption = captions[c]
for j in range(len(caption)):
if d[caption[j]] > 0:
uembedding[j,ind] = model['utable'][caption[j]]
bembedding[j,ind] = model['btable'][caption[j]]
else:
uembedding[j,ind] = model['utable']['UNK']
bembedding[j,ind] = model['btable']['UNK']
if use_eos:
uembedding[-1,ind] = model['utable']['<eos>']
bembedding[-1,ind] = model['btable']['<eos>']
if use_eos:
uff = model['f_w2v'](uembedding, numpy.ones((len(caption)+1,len(caps)), dtype='float32'))
bff = model['f_w2v2'](bembedding, numpy.ones((len(caption)+1,len(caps)), dtype='float32'))
else:
uff = model['f_w2v'](uembedding, numpy.ones((len(caption),len(caps)), dtype='float32'))
bff = model['f_w2v2'](bembedding, numpy.ones((len(caption),len(caps)), dtype='float32'))
if use_norm:
for j in range(len(uff)):
uff[j] /= norm(uff[j])
bff[j] /= norm(bff[j])
for ind, c in enumerate(caps):
ufeatures[c] = uff[ind]
bfeatures[c] = bff[ind]
features = numpy.c_[ufeatures, bfeatures]
return features
def preprocess(text):
"""
Preprocess text for encoder
"""
X = []
sent_detector = nltk.data.load('tokenizers/punkt/english.pickle')
for t in text:
sents = sent_detector.tokenize(t)
result = ''
for s in sents:
tokens = word_tokenize(s)
result += ' ' + ' '.join(tokens)
X.append(result)
return X
def nn(model, text, vectors, query, k=5):
"""
Return the nearest neighbour sentences to query
text: list of sentences
vectors: the corresponding representations for text
query: a string to search
"""
qf = encode(model, [query])
qf /= norm(qf)
scores = numpy.dot(qf, vectors.T).flatten()
sorted_args = numpy.argsort(scores)[::-1]
sentences = [text[a] for a in sorted_args[:k]]
print('QUERY: ' + query)
print('NEAREST: ')
for i, s in enumerate(sentences):
print(s, sorted_args[i])
def word_features(table):
"""
Extract word features into a normalized matrix
"""
features = numpy.zeros((len(table), 620), dtype='float32')
keys = table.keys()
for i in range(len(table)):
f = table[keys[i]]
features[i] = f / norm(f)
return features
def nn_words(table, wordvecs, query, k=10):
"""
Get the nearest neighbour words
"""
keys = table.keys()
qf = table[query]
scores = numpy.dot(qf, wordvecs.T).flatten()
sorted_args = numpy.argsort(scores)[::-1]
words = [keys[a] for a in sorted_args[:k]]
print('QUERY: ' + query)
print('NEAREST: ')
for i, w in enumerate(words):
print(w)
def _p(pp, name):
"""
make prefix-appended name
"""
return '%s_%s'%(pp, name)
def init_tparams(params):
"""
initialize Theano shared variables according to the initial parameters
"""
tparams = OrderedDict()
for kk, pp in params.iteritems():
tparams[kk] = theano.shared(params[kk], name=kk)
return tparams
def load_params(path, params):
"""
load parameters
"""
pp = numpy.load(path)
for kk, vv in params.iteritems():
if kk not in pp:
warnings.warn('%s is not in the archive'%kk)
continue
params[kk] = pp[kk]
return params
# layers: 'name': ('parameter initializer', 'feedforward')
layers = {'gru': ('param_init_gru', 'gru_layer')}
def get_layer(name):
fns = layers[name]
return (eval(fns[0]), eval(fns[1]))
def init_params(options):
"""
initialize all parameters needed for the encoder
"""
params = OrderedDict()
# embedding
params['Wemb'] = norm_weight(options['n_words_src'], options['dim_word'])
# encoder: GRU
params = get_layer(options['encoder'])[0](options, params, prefix='encoder',
nin=options['dim_word'], dim=options['dim'])
return params
def init_params_bi(options):
"""
initialize all paramters needed for bidirectional encoder
"""
params = OrderedDict()
# embedding
params['Wemb'] = norm_weight(options['n_words_src'], options['dim_word'])
# encoder: GRU
params = get_layer(options['encoder'])[0](options, params, prefix='encoder',
nin=options['dim_word'], dim=options['dim'])
params = get_layer(options['encoder'])[0](options, params, prefix='encoder_r',
nin=options['dim_word'], dim=options['dim'])
return params
def build_encoder(tparams, options):
"""
build an encoder, given pre-computed word embeddings
"""
# word embedding (source)
embedding = tensor.tensor3('embedding', dtype='float32')
x_mask = tensor.matrix('x_mask', dtype='float32')
# encoder
proj = get_layer(options['encoder'])[1](tparams, embedding, options,
prefix='encoder',
mask=x_mask)
ctx = proj[0][-1]
return embedding, x_mask, ctx
def build_encoder_bi(tparams, options):
"""
build bidirectional encoder, given pre-computed word embeddings
"""
# word embedding (source)
embedding = tensor.tensor3('embedding', dtype='float32')
embeddingr = embedding[::-1]
x_mask = tensor.matrix('x_mask', dtype='float32')
xr_mask = x_mask[::-1]
# encoder
proj = get_layer(options['encoder'])[1](tparams, embedding, options,
prefix='encoder',
mask=x_mask)
projr = get_layer(options['encoder'])[1](tparams, embeddingr, options,
prefix='encoder_r',
mask=xr_mask)
ctx = tensor.concatenate([proj[0][-1], projr[0][-1]], axis=1)
return embedding, x_mask, ctx
# some utilities
def ortho_weight(ndim):
W = numpy.random.randn(ndim, ndim)
u, s, v = numpy.linalg.svd(W)
return u.astype('float32')
def norm_weight(nin,nout=None, scale=0.1, ortho=True):
if nout == None:
nout = nin
if nout == nin and ortho:
W = ortho_weight(nin)
else:
W = numpy.random.uniform(low=-scale, high=scale, size=(nin, nout))
return W.astype('float32')
def param_init_gru(options, params, prefix='gru', nin=None, dim=None):
"""
parameter init for GRU
"""
if nin == None:
nin = options['dim_proj']
if dim == None:
dim = options['dim_proj']
W = numpy.concatenate([norm_weight(nin,dim),
norm_weight(nin,dim)], axis=1)
params[_p(prefix,'W')] = W
params[_p(prefix,'b')] = numpy.zeros((2 * dim,)).astype('float32')
U = numpy.concatenate([ortho_weight(dim),
ortho_weight(dim)], axis=1)
params[_p(prefix,'U')] = U
Wx = norm_weight(nin, dim)
params[_p(prefix,'Wx')] = Wx
Ux = ortho_weight(dim)
params[_p(prefix,'Ux')] = Ux
params[_p(prefix,'bx')] = numpy.zeros((dim,)).astype('float32')
return params
def gru_layer(tparams, state_below, options, prefix='gru', mask=None, **kwargs):
"""
Forward pass through GRU layer
"""
nsteps = state_below.shape[0]
if state_below.ndim == 3:
n_samples = state_below.shape[1]
else:
n_samples = 1
dim = tparams[_p(prefix,'Ux')].shape[1]
if mask == None:
mask = tensor.alloc(1., state_below.shape[0], 1)
def _slice(_x, n, dim):
if _x.ndim == 3:
return _x[:, :, n*dim:(n+1)*dim]
return _x[:, n*dim:(n+1)*dim]
state_below_ = tensor.dot(state_below, tparams[_p(prefix, 'W')]) + tparams[_p(prefix, 'b')]
state_belowx = tensor.dot(state_below, tparams[_p(prefix, 'Wx')]) + tparams[_p(prefix, 'bx')]
U = tparams[_p(prefix, 'U')]
Ux = tparams[_p(prefix, 'Ux')]
def _step_slice(m_, x_, xx_, h_, U, Ux):
preact = tensor.dot(h_, U)
preact += x_
r = tensor.nnet.sigmoid(_slice(preact, 0, dim))
u = tensor.nnet.sigmoid(_slice(preact, 1, dim))
preactx = tensor.dot(h_, Ux)
preactx = preactx * r
preactx = preactx + xx_
h = tensor.tanh(preactx)
h = u * h_ + (1. - u) * h
h = m_[:,None] * h + (1. - m_)[:,None] * h_
return h
seqs = [mask, state_below_, state_belowx]
_step = _step_slice
rval, updates = theano.scan(_step,
sequences=seqs,
outputs_info = [tensor.alloc(0., n_samples, dim)],
non_sequences = [tparams[_p(prefix, 'U')],
tparams[_p(prefix, 'Ux')]],
name=_p(prefix, '_layers'),
n_steps=nsteps,
profile=profile,
strict=True)
rval = [rval]
return rval