forked from madhavthaker/text_summarization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_rank.py
458 lines (368 loc) · 13.8 KB
/
eval_rank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
'''
Evaluation code for image-sentence ranking
'''
import numpy as np
import theano
import theano.tensor as tensor
import cPickle as pkl
import numpy
import copy
import os
import time
from scipy import optimize, stats
from scipy.linalg import norm
from collections import OrderedDict
from sklearn.cross_validation import KFold
from numpy.random import RandomState
import warnings
# push parameters to Theano shared variables
def zipp(params, tparams):
for kk, vv in params.iteritems():
tparams[kk].set_value(vv)
# pull parameters from Theano shared variables
def unzip(zipped):
new_params = OrderedDict()
for kk, vv in zipped.iteritems():
new_params[kk] = vv.get_value()
return new_params
# get the list of parameters: Note that tparams must be OrderedDict
def itemlist(tparams):
return [vv for kk, vv in tparams.iteritems()]
# make prefix-appended name
def _p(pp, name):
return '%s_%s'%(pp, name)
# all parameters
def init_params(options):
"""
Initalize all model parameters here
"""
params = OrderedDict()
# Image embedding, sentence embedding
params = get_layer('ff')[0](options, params, prefix='ff_im', nin=options['dim_im'], nout=options['dim'])
params = get_layer('ff')[0](options, params, prefix='ff_s', nin=options['dim_s'], nout=options['dim'])
return params
# initialize Theano shared variables according to the initial parameters
def init_tparams(params):
tparams = OrderedDict()
for kk, pp in params.iteritems():
tparams[kk] = theano.shared(params[kk], name=kk)
return tparams
# load parameters
def load_params(path, params):
pp = numpy.load(path)
for kk, vv in params.iteritems():
if kk not in pp:
raise Warning('%s is not in the archive'%kk)
params[kk] = pp[kk]
return params
# layers: 'name': ('parameter initializer', 'feedforward')
layers = {'ff': ('param_init_fflayer', 'fflayer')}
def get_layer(name):
"""
Part of the reason the init is very slow is because,
the layer's constructor is called even when it isn't needed
"""
fns = layers[name]
return (eval(fns[0]), eval(fns[1]))
def norm_weight(nin,nout=None):
"""
Weight initialization
"""
if nout == None:
nout = nin
else:
r = numpy.sqrt( 2. / nin)
W = numpy.random.rand(nin, nout) * 2 * r - r
return W.astype('float32')
def linear(x):
return x
# feedforward layer: affine transformation + point-wise nonlinearity
def param_init_fflayer(options, params, prefix='ff', nin=None, nout=None):
if nin == None:
nin = options['dim_proj']
if nout == None:
nout = options['dim_proj']
params[_p(prefix,'W')] = norm_weight(nin, nout)
params[_p(prefix,'b')] = numpy.zeros((nout,)).astype('float32')
return params
def fflayer(tparams, state_below, options, prefix='rconv', activ='lambda x: tensor.tanh(x)', **kwargs):
return eval(activ)(tensor.dot(state_below, tparams[_p(prefix,'W')])+tparams[_p(prefix,'b')])
# L2norm, row-wise
def l2norm(X):
norm = tensor.sqrt(tensor.pow(X, 2).sum(1))
X /= norm[:, None]
return X
# build a training model
def build_model(tparams, options):
"""
Construct computation graph for the whole model
"""
# inputs (image, sentence, contrast images, constrast sentences)
im = tensor.matrix('im', dtype='float32')
s = tensor.matrix('s', dtype='float32')
cim = tensor.matrix('cim', dtype='float32')
cs = tensor.matrix('cs', dtype='float32')
# image embedding
lim = get_layer('ff')[1](tparams, im, options, prefix='ff_im', activ='linear')
lcim = get_layer('ff')[1](tparams, cim, options, prefix='ff_im', activ='linear')
# sentence embedding
ls = get_layer('ff')[1](tparams, s, options, prefix='ff_s', activ='linear')
lcs = get_layer('ff')[1](tparams, cs, options, prefix='ff_s', activ='linear')
# L2 norm for sentences
ls = l2norm(ls)
lcs = l2norm(lcs)
# Tile by number of contrast terms
lim = tensor.tile(lim, (options['ncon'], 1))
ls = tensor.tile(ls, (options['ncon'], 1))
# pairwise ranking loss
cost_im = options['margin'] - (lim * ls).sum(axis=1) + (lim * lcs).sum(axis=1)
cost_im = cost_im * (cost_im > 0.)
cost_im = cost_im.sum(0)
cost_s = options['margin'] - (ls * lim).sum(axis=1) + (ls * lcim).sum(axis=1)
cost_s = cost_s * (cost_s > 0.)
cost_s = cost_s.sum(0)
cost = cost_im + cost_s
return [im, s, cim, cs], cost
# build an encoder
def build_encoder(tparams, options):
"""
Construct encoder
"""
# inputs (image, sentence)
im = tensor.matrix('im', dtype='float32')
s = tensor.matrix('s', dtype='float32')
# embeddings
eim = get_layer('ff')[1](tparams, im, options, prefix='ff_im', activ='linear')
es = get_layer('ff')[1](tparams, s, options, prefix='ff_s', activ='linear')
# L2 norm of rows
lim = l2norm(eim)
ls = l2norm(es)
return [im, s], lim, ls
# optimizers
# name(hyperp, tparams, grads, inputs (list), cost) = f_grad_shared, f_update
def adam(lr, tparams, grads, inp, cost):
gshared = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_grad'%k) for k, p in tparams.iteritems()]
gsup = [(gs, g) for gs, g in zip(gshared, grads)]
f_grad_shared = theano.function(inp, cost, updates=gsup)
lr0 = 0.0002
b1 = 0.1
b2 = 0.001
e = 1e-8
updates = []
i = theano.shared(numpy.float32(0.))
i_t = i + 1.
fix1 = 1. - b1**(i_t)
fix2 = 1. - b2**(i_t)
lr_t = lr0 * (tensor.sqrt(fix2) / fix1)
for p, g in zip(tparams.values(), gshared):
m = theano.shared(p.get_value() * numpy.float32(0.))
v = theano.shared(p.get_value() * numpy.float32(0.))
m_t = (b1 * g) + ((1. - b1) * m)
v_t = (b2 * tensor.sqr(g)) + ((1. - b2) * v)
g_t = m_t / (tensor.sqrt(v_t) + e)
p_t = p - (lr_t * g_t)
updates.append((m, m_t))
updates.append((v, v_t))
updates.append((p, p_t))
updates.append((i, i_t))
f_update = theano.function([lr], [], updates=updates, on_unused_input='ignore')
return f_grad_shared, f_update
# things to avoid doing
def validate_options(options):
if options['dim'] > options['dim_im']:
warnings.warn('dim should not be bigger than image dimension')
if options['dim'] > options['dim_s']:
warnings.warn('dim should not be bigger than sentence dimension')
if options['margin'] > 1:
warnings.warn('margin should not be bigger than 1')
return options
# Load a saved model and evaluate the results
def evaluate(X, saveto, evaluate=False, out=False):
print "Loading model..."
with open('%s.pkl'%saveto, 'rb') as f:
model_options = pkl.load(f)
params = init_params(model_options)
params = load_params(saveto, params)
tparams = init_tparams(params)
print 'Building encoder'
inps_e, lim, ls = build_encoder(tparams, model_options)
f_emb = theano.function(inps_e, [lim, ls], profile=False)
print 'Compute embeddings...'
lim, ls = f_emb(X[1], X[2])
if evaluate:
(r1, r5, r10, medr) = i2t(lim, ls)
print "Image to text: %.1f, %.1f, %.1f, %.1f" % (r1, r5, r10, medr)
(r1i, r5i, r10i, medri) = t2i(lim, ls)
print "Text to image: %.1f, %.1f, %.1f, %.1f" % (r1i, r5i, r10i, medri)
if out:
return lim, ls
# trainer
def trainer(train, dev, # training and development tuples
dim=1000, # embedding dimensionality
dim_im=4096, # image dimensionality
dim_s=4800, # sentence dimensionality
margin=0.2, # margin for pairwise ranking
ncon=50, # number of contrastive terms
max_epochs=15,
lrate=0.01, # not needed with Adam
dispFreq=10,
optimizer='adam',
batch_size = 100,
valid_batch_size = 100,
saveto='/ais/gobi3/u/rkiros/ssg/models/cocorank1000_combine.npz',
validFreq=500,
saveFreq=500,
reload_=False):
# Model options
model_options = {}
model_options['dim'] = dim
model_options['dim_im'] = dim_im
model_options['dim_s'] = dim_s
model_options['margin'] = margin
model_options['ncon'] = ncon
model_options['max_epochs'] = max_epochs
model_options['lrate'] = lrate
model_options['dispFreq'] = dispFreq
model_options['optimizer'] = optimizer
model_options['batch_size'] = batch_size
model_options['valid_batch_size'] = valid_batch_size
model_options['saveto'] = saveto
model_options['validFreq'] = validFreq
model_options['saveFreq'] = saveFreq
model_options['reload_'] = reload_
model_options = validate_options(model_options)
print model_options
# reload options
if reload_ and os.path.exists(saveto):
print "Reloading options"
with open('%s.pkl'%saveto, 'rb') as f:
model_options = pkl.load(f)
print 'Building model'
params = init_params(model_options)
# reload parameters
if reload_ and os.path.exists(saveto):
print "Reloading model"
params = load_params(saveto, params)
tparams = init_tparams(params)
inps, cost = build_model(tparams, model_options)
print 'Building encoder'
inps_e, lim, ls = build_encoder(tparams, model_options)
print 'Building functions'
f_cost = theano.function(inps, -cost, profile=False)
f_emb = theano.function(inps_e, [lim, ls], profile=False)
# gradient computation
print 'Computing gradients'
grads = tensor.grad(cost, wrt=itemlist(tparams))
lr = tensor.scalar(name='lr')
f_grad_shared, f_update = eval(optimizer)(lr, tparams, grads, inps, cost)
print 'Optimization'
uidx = 0
estop = False
start = 1234
seed = 1234
inds = numpy.arange(len(train[0]))
numbatches = len(inds) / batch_size
curr = 0
counter = 0
target=None
history_errs = []
# Main loop
for eidx in range(max_epochs):
tic = time.time()
prng = RandomState(seed - eidx - 1)
prng.shuffle(inds)
for minibatch in range(numbatches):
uidx += 1
conprng_im = RandomState(seed + uidx + 1)
conprng_s = RandomState(2*seed + uidx + 1)
im = train[1][inds[minibatch::numbatches]]
s = train[2][inds[minibatch::numbatches]]
cinds_im = conprng_im.random_integers(low=0, high=len(train[0])-1, size=ncon * len(im))
cinds_s = conprng_s.random_integers(low=0, high=len(train[0])-1, size=ncon * len(s))
cim = train[1][cinds_im]
cs = train[2][cinds_s]
ud_start = time.time()
cost = f_grad_shared(im, s, cim, cs)
f_update(lrate)
ud_duration = time.time() - ud_start
if numpy.mod(uidx, dispFreq) == 0:
print 'Epoch ', eidx, 'Update ', uidx, 'Cost ', cost, 'UD ', ud_duration
if numpy.mod(uidx, validFreq) == 0:
print 'Computing ranks...'
lim, ls = f_emb(dev[1], dev[2])
(r1, r5, r10, medr) = i2t(lim, ls)
print "Image to text: %.1f, %.1f, %.1f, %.1f" % (r1, r5, r10, medr)
(r1i, r5i, r10i, medri) = t2i(lim, ls)
print "Text to image: %.1f, %.1f, %.1f, %.1f" % (r1i, r5i, r10i, medri)
currscore = r1 + r5 + r10 + r1i + r5i + r10i
if currscore > curr:
curr = currscore
# Save model
print 'Saving...',
params = unzip(tparams)
numpy.savez(saveto, history_errs=history_errs, **params)
pkl.dump(model_options, open('%s.pkl'%saveto, 'wb'))
print 'Done'
def i2t(images, captions, npts=None):
"""
Images: (5N, K) matrix of images
Captions: (5N, K) matrix of captions
"""
if npts == None:
npts = images.shape[0] / 5
index_list = []
# Project captions
for i in range(len(captions)):
captions[i] /= norm(captions[i])
ranks = numpy.zeros(npts)
for index in range(npts):
# Get query image
im = images[5 * index].reshape(1, images.shape[1])
im /= norm(im)
# Compute scores
d = numpy.dot(im, captions.T).flatten()
inds = numpy.argsort(d)[::-1]
index_list.append(inds[0])
# Score
rank = 1e20
for i in range(5*index, 5*index + 5, 1):
tmp = numpy.where(inds == i)[0][0]
if tmp < rank:
rank = tmp
ranks[index] = rank
# Compute metrics
r1 = 100.0 * len(numpy.where(ranks < 1)[0]) / len(ranks)
r5 = 100.0 * len(numpy.where(ranks < 5)[0]) / len(ranks)
r10 = 100.0 * len(numpy.where(ranks < 10)[0]) / len(ranks)
medr = numpy.floor(numpy.median(ranks)) + 1
return (r1, r5, r10, medr)
def t2i(images, captions, npts=None):
"""
Images: (5N, K) matrix of images
Captions: (5N, K) matrix of captions
"""
if npts == None:
npts = images.shape[0] / 5
ims = numpy.array([images[i] for i in range(0, len(images), 5)])
# Project images
for i in range(len(ims)):
ims[i] /= norm(ims[i])
# Project captions
for i in range(len(captions)):
captions[i] /= norm(captions[i])
ranks = np.zeros(5 * npts)
for index in range(npts):
# Get query captions
queries = captions[5*index : 5*index + 5]
# Compute scores
d = numpy.dot(queries, ims.T)
inds = numpy.zeros(d.shape)
for i in range(len(inds)):
inds[i] = numpy.argsort(d[i])[::-1]
ranks[5 * index + i] = numpy.where(inds[i] == index)[0][0]
# Compute metrics
r1 = 100.0 * len(numpy.where(ranks < 1)[0]) / len(ranks)
r5 = 100.0 * len(numpy.where(ranks < 5)[0]) / len(ranks)
r10 = 100.0 * len(numpy.where(ranks < 10)[0]) / len(ranks)
medr = numpy.floor(numpy.median(ranks)) + 1
return (r1, r5, r10, medr)