-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathtrain.py
171 lines (160 loc) · 5.07 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# -*- coding: utf-8 -*-
import argparse
import sys, time
import chainer
import chainer.optimizers
import chainer.serializers
import chainer.functions as F
from chainer import Variable
from chainer import cuda
import numpy as np
from model import LetterClassifyer
def argument():
parser = argparse.ArgumentParser()
parser.add_argument('mode')
parser.add_argument('file')
parser.add_argument('--embed', default=200, type=int)
parser.add_argument('--vocab', default=3000, type=int)
parser.add_argument('--hidden', default=1000, type=int)
parser.add_argument('--epoch', default=100, type=int)
parser.add_argument('--model', default="model")
parser.add_argument('--classes', default=2, type=int)
parser.add_argument('--use-gpu', action='store_true', default=False)
parser.add_argument('--unchain', action='store_true', default=False)
args = parser.parse_args()
return args
# ファイルから1文字単位の列とラベルを取得
def letter_list(fname):
with open(fname) as f:
for l in f:
body = l[:-3]
val = int(l[-2])
x = list(''.join(body.split()))
x.append('</s>')
yield x, val
def letter_list_text(t):
x = list(''.join(t.split()))
x.append('</s>')
return x
#
class Vocabulary:
def __init__(self, fname):
self.fname = fname
self.l2i = {}
self.i2l = []
if not fname is None:
self.load_vocab()
def stoi(self, letter):
if letter in self.l2i:
return self.l2i[letter]
return self.l2i['<unk>']
def itos(self, id):
if id < len(self.i2l):
return self.i2l[id]
return '<unk>'
def append_letter(self, l):
if l in self.l2i:
return
self.i2l.append(l)
id = len(self.i2l) -1
self.l2i[l] = id
def load_vocab(self):
self.append_letter('<unk>')
self.append_letter('<s>')
self.append_letter('</s>')
with open(self.fname) as f:
for line in f:
nline = line[:-3]
for l in nline:
self.append_letter(l)
def save_vocab(self, filename):
with open(filename, 'w') as f:
for l in self.i2l:
f.write(l + "\n")
@staticmethod
def load_from_file(filename):
vocab = Vocabulary(None)
with open(filename) as f:
for l in f:
l = l[:-1]
vocab.append_letter(l)
return vocab
def forward(src_batch, t, model, is_training, vocab, xp):
batch_size = len(src_batch)
src_len = len(src_batch[0])
src_stoi = vocab.stoi
x_batch = [Variable(xp.asarray([[src_stoi(x)]], dtype=xp.int32)) for x in src_batch[0]]
y = model.forward(x_batch)
if is_training:
t = Variable(xp.asarray([t], dtype=xp.int32))
loss = F.softmax_cross_entropy(y, t)
acc = F.accuracy(y, t)
return y, acc, loss
else:
return y
def train(args):
if args.use_gpu:
xp = cuda.cupy
cuda.get_device(0).use()
else:
xp = np
vocab = Vocabulary(args.file)
m = LetterClassifyer(args.vocab, args.embed, args.hidden, args.classes)
m.zerograds()
if args.use_gpu:
m.to_gpu()
time_t = 10
for e in range(args.epoch):
opt = chainer.optimizers.Adam(alpha=0.001)
opt.setup(m)
opt.add_hook(chainer.optimizer.GradientClipping(5.0))
print("epoch: %d" % e)
i =0
total_acc = 0
e_acc = 0.0
for x_batch, y in letter_list(args.file):
x_batch = [x_batch]
output, acc, loss = forward(x_batch, y, m, True, vocab, xp)
total_acc += acc
e_acc += acc
if i % time_t == 0:
if i != 0:
total_acc /= time_t
print("time: %d, accuracy %f loss %f" % (i, total_acc.data, loss.data))
total_acc = 0
# print("".join(x_batch[0]))
# print(",".join([str(vocab.stoi(x)) for x in x_batch[0]]))
loss.backward()
if args.unchain:
loss.unchain_backward()
opt.update()
i += 1
sys.stdout.flush()
chainer.serializers.save_hdf5(args.model + ".hdf5", m)
vocab.save_vocab(args.model + ".vocab")
e_acc /= i
print("total acc: %f" % e_acc.data)
def eval(args):
if args.use_gpu:
xp = cuda.cupy
cuda.get_device(0).use()
else:
xp = np
vocab = Vocabulary.load_from_file("%s.vocab" % args.model)
m = LetterClassifyer(args.vocab, args.embed, args.hidden, args.classes)
chainer.serializers.load_hdf5("%s.hdf5" % args.model, m)
if args.use_gpu:
m.to_gpu()
x_batch = [letter_list_text(args.file)]
output = forward(x_batch, None, m, False, vocab, xp)
print(output.data)
print("hyp: %d" % np.argmax(output.data)) # label
def main():
args = argument()
if args.mode == 'train':
train(args)
else:
eval(args)
if __name__ == '__main__':
main()
#