-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrnng.py
301 lines (276 loc) · 11.5 KB
/
rnng.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
from operator import itemgetter
from itertools import count, chain
from collections import Counter, defaultdict
import random
import dynet as dy
import numpy as np
import re
# Adapted from https://github.com/neubig/nn4nlp-code/blob/master/12-transitionparsing/stack_lstm.py
# and https://github.com/clab/rnng/blob/master/nt-parser/nt-parser-gen.cc
train_file = "data/train.oracle"
dev_file = "data/dev.oracle"
test_file = "data/test.oracle"
cluster_file = "data/bllip_clusters"
class Vocab:
def __init__(self, w2i):
self.w2i = dict(w2i)
self.i2w = {i:w for w,i in w2i.items()}
@classmethod
def from_list(cls, words):
w2i = {}
idx = 0
for word in words:
w2i[word] = idx
idx += 1
return Vocab(w2i)
@classmethod
def from_file(cls, vocab_fname):
words = []
with open(vocab_fname) as fh:
for line in fh:
line.strip()
cluster, word, count = line.split("\t")
words.append(word)
return Vocab.from_list(words)
def merge_vocab(self, dic):
self.w2i = Vocab(self.w2i.keys() + dic.keys()).w2i
self.i2w = {i:w for w,i in self.w2i.items()}
def size(self): return len(self.w2i.keys())
class TransitionParser:
def __init__(self, model, cluster_filepath, vocab_acts, WORD_DIM=50, LSTM_DIM=256, ACTION_DIM=16):
self.vocab = Vocab.from_file(cluster_filepath)
#self.vocab.w2i["UNK"] = self.vocab.size() + 1 # add "UNK" to vocabulary... nope =/
self.vocab_acts = vocab_acts
self.vocab_NTs = Vocab.from_list(get_NTs(vocab_acts.w2i.keys()))
self.act_NT_map = dict([[vocab_acts.w2i[x], self.vocab_NTs.w2i[x[3:-1]]]
for x in vocab_acts.w2i if x.startswith("NT")])
# parameters
self.pW_comp = model.add_parameters((LSTM_DIM, LSTM_DIM*2))
self.pb_comp = model.add_parameters((LSTM_DIM, ))
self.pW_s2h = model.add_parameters((LSTM_DIM, LSTM_DIM ))
self.pb_s2h = model.add_parameters((LSTM_DIM, ))
self.pW_act = model.add_parameters((vocab_acts.size(), LSTM_DIM))
self.pb_act = model.add_parameters((vocab_acts.size(), ))
self.pempty_stack_emb = model.add_parameters((LSTM_DIM,)) # empty stack embedding /root guard
# layers, in-dim, out-dim, model
self.stackRNN = dy.CoupledLSTMBuilder(2, LSTM_DIM, LSTM_DIM, model)
self.comp_LSTM_fwd = dy.CoupledLSTMBuilder(2, LSTM_DIM, LSTM_DIM, model)
self.comp_LSTM_rev = dy.CoupledLSTMBuilder(2, LSTM_DIM, LSTM_DIM, model)
self.cfsm = dy.ClassFactoredSoftmaxBuilder(LSTM_DIM, cluster_filepath, self.vocab.w2i, model);
# lookup params
self.WORDS_LOOKUP = model.add_lookup_parameters((self.vocab.size(), LSTM_DIM))
self.ACT_LOOKUP = model.add_lookup_parameters((self.vocab_acts.size(), ACTION_DIM))
self.NT_LOOKUP = model.add_lookup_parameters((self.vocab_NTs.size(), LSTM_DIM))
self.pc = model
def gen_setup(self, dropout=None):
dy.renew_cg()
stack = []
stack.append((self.stackRNN.initial_state().add_input(dy.parameter(self.pempty_stack_emb)),
"<ROOT GUARD>")) # stack holds tuples: RNN state, string rep
W_comp = dy.parameter(self.pW_comp)
b_comp = dy.parameter(self.pb_comp)
W_s2h = dy.parameter(self.pW_s2h)
b_s2h = dy.parameter(self.pb_s2h)
W_act = dy.parameter(self.pW_act)
b_act = dy.parameter(self.pb_act)
if dropout:
self.stackRNN.set_dropout(dropout)
self.comp_LSTM_fwd.set_dropout(dropout)
self.comp_LSTM_rev.set_dropout(dropout)
else:
self.stackRNN.disable_dropout()
self.comp_LSTM_fwd.disable_dropout()
self.comp_LSTM_rev.disable_dropout()
return [stack, # initial stack state,
{"comp": (b_comp, W_comp), # bias and weight params for composition
"s2h": (b_s2h, W_s2h), # bias and weight params for parser state
"act": (b_act, W_act)}] # bias and weight params for predicting actions
def get_valid_actions(self, stack, open_nts, open_nt_ceil=100):
# based on stack state, get valid actions
valid_actions = []
n_open_nts = len(open_nts)
if n_open_nts < open_nt_ceil:
valid_actions += [v for k, v in self.vocab_acts.w2i.items() if k.startswith("NT")]
if n_open_nts >= 1 and len(stack) > 1:
valid_actions += [self.vocab_acts.w2i["SHIFT"]]
if n_open_nts >= 1 and len(stack) > 1 \
and len(stack) - 1 > open_nts[-1]: # top element on stack can't be open NT
valid_actions += [self.vocab_acts.w2i["REDUCE"]]
return valid_actions
def predict_action(self, stack, params, valid_actions, dropout=None):
stack_embedding = stack[-1][0].output()
if dropout:
stack_embedding = dy.dropout(stack_embedding, dropout)
parser_state = dy.rectify(dy.affine_transform([params["s2h"][0], params["s2h"][1], stack_embedding]))
logits = dy.affine_transform([params["act"][0], params["act"][1], parser_state])
log_probs = dy.log_softmax(logits, valid_actions)
return log_probs
def get_action(self, stack, params, valid_actions, n_actions, train_acts=None, dropout=None):
action = valid_actions[0]
loss = None
if len(valid_actions) > 1:
log_probs = self.predict_action(stack, params, valid_actions, dropout)
if train_acts:
try:
action = self.vocab_acts.w2i[train_acts[n_actions]]
except IndexError:
raise Exception("Correct action list exhausted, but not in final parser state.")
loss = dy.pick(log_probs, action)
else:
action = max(enumerate(log_probs.vec_value()), key=itemgetter(1))[0]
return action, loss
def do_action(self, stack, action, params, open_nts, n_terms, train_sent=None, dropout=None):
if action in self.vocab_acts.i2w:
act = action
action = self.vocab_acts.i2w[action]
else:
act = self.vocab_acts.w2i[action]
word, nt_index, loss = "", 0, None
if action == "SHIFT":
if train_sent:
try:
word = train_sent[n_terms]
except IndexError:
raise Exception("Generated more terms than found in training sentence")
if word not in self.vocab.w2i: ### for now, treat clusters as vocab
if word.lower() in self.vocab.w2i:
word = word.lower()
else:
#word = "UNK" ### - all words not in cluster file get UNKified - OR...
word = random.sample(self.vocab.w2i.keys(), 1)[0] # ...replaced w/rando in-vocab wd
# TODO: ^ this is not at all optimal, figure out how to fix
loss = -self.cfsm.neg_log_softmax(stack[-1][0].output(), self.vocab.w2i[word])
else:
word = self.vocab.i2w[self.cfsm.sample(stack[-1][0].output())]
word_embedding = self.WORDS_LOOKUP[self.vocab.w2i[word]]
stack.append((stack[-1][0].add_input(word_embedding), word))
elif action == "REDUCE":
children = []
last_nt_idx = open_nts.pop()
while len(stack) > last_nt_idx + 1:
children.append(stack.pop())
children.reverse()
last_nt = stack.pop()
fwd = self.comp_LSTM_fwd.initial_state().add_input(last_nt[0].output())
rev = self.comp_LSTM_rev.initial_state().add_input(last_nt[0].output())
for i, child in enumerate(children):
fwd.add_input(child[0].output())
rev.add_input(children[len(children) - i - 1][0].output())
cfwd = dy.dropout(fwd.output(), dropout) if dropout else fwd.output()
crev = dy.dropout(rev.output(), dropout) if dropout else rev.output()
bidir_rep = dy.concatenate([cfwd, crev])
composed = dy.rectify(dy.affine_transform([params["comp"][0],
params["comp"][1], bidir_rep]))
comp_str = last_nt[1] + " " + " ".join([child[1] for child in children]) + ")"
stack.append((stack[-1][0].add_input(composed), comp_str))
else: # open nonterminal
NT = self.act_NT_map[act]
nt_embedding = self.NT_LOOKUP[NT]
stack.append((stack[-1][0].add_input(nt_embedding), "("+self.vocab_NTs.i2w[NT]))
nt_index = len(stack) - 1
return word, nt_index, loss
def generate(self, train_sent=None, train_acts=None, dropout=None, nt_ceil=100):
stack, params = self.gen_setup(dropout)
terms, actions, open_nts, losses = [], [], [], []
while len(terms) == 0 or len(stack) > 2 :
valid_actions = self.get_valid_actions(stack, open_nts, nt_ceil)
action, loss = self.get_action(stack, params, valid_actions, len(actions), train_acts, dropout)
losses.append(loss) if loss else loss
actions.append(action)
term, nt_idx, loss = self.do_action(stack, action, params, open_nts, len(terms), train_sent, dropout)
losses.append(loss) if loss else loss
terms.append(term) if term else term
open_nts.append(nt_idx) if nt_idx else nt_idx # open NT index is never 0
if not train_sent:
if len(terms) % 5 == 0:
print(" ".join(terms))
final_tree = stack[1][1]
return final_tree, -dy.esum(losses) if losses else None
def train(self, corpus, trainer, dev=None, dropout=.3, epochs=3, max_iter=None):
i = 0
corpus.sort(key=lambda x: len(x[1]))
order = list(range(len(corpus)))
for epoch in range(epochs):
random.shuffle(order)
shuffled_corpus = [corpus[i] for i in order]
words = 0
total_loss = 0.0
for (_, s,a) in shuffled_corpus:
result, loss = self.generate(s, a, dropout)
words += len(s)
if loss is not None:
total_loss += loss.scalar_value()
loss.backward()
trainer.update()
e = float(i) / len(corpus)
if i % 50 == 0:
print('epoch {}: per-word loss: {}'.format(e, total_loss / words))
if e > 1:
result, loss = self.generate()
print(" {}".format(result))
words = 0
total_loss = 0.0
if i % 500 == 0 and dev:
dev_words = 0
dev_loss = 0.0
for (_, ds, da) in dev:
result, loss = self.generate(ds, da)
dev_words += len(ds)
if loss is not None:
dev_loss += loss.scalar_value()
print('[validation] epoch {}: per-word loss: {}'.format(e, dev_loss / dev_words))
i += 1
if max_iter:
if i >= max_iter:
break
if max_iter:
if i >= max_iter:
break
def read_oracle(fname, gen=True):
sent_idx = 1 if gen else 4 # using non-UNKified sentences
act_idx = 3 if gen else 5
with open(fname) as fh:
sent_ctr = 0
tree, sent, acts = "", [], []
for line in fh:
sent_ctr += 1
line = line.strip()
if line.startswith("#"):
sent_ctr = 0
if tree:
yield tree, sent, acts
tree, sent, acts = line, [], []
if sent_ctr == sent_idx:
sent = line.split()
if sent_ctr >= act_idx:
if line:
acts.append(line)
def load_data(tr=train_file, d=dev_file, ts=test_file):
train, dev, test = [], [], []
if tr:
train = list(read_oracle(tr))
if d:
dev = list(read_oracle(d))
if ts:
test = list(read_oracle(ts))
return train, dev, test
def create_vocab(all_terms):
vocab = list(set(list(chain(*all_terms))))
return Vocab.from_list(vocab)
def get_NTs(actions):
NTs = []
for act in actions:
if act.startswith("NT"):
NTs.append(act[3:-1])
return NTs
WORD_DIM = 50
LSTM_DIM = 256 # same for input and hidden layers
ACTION_DIM = 16 # dimension for action embedding
def main(tr=train_file, d=dev_file, ts=test_file):
train, dev, test = load_data(tr, d, ts)
# for the time being...
train += test
vocab_acts = create_vocab([x[2] for x in train])
model = dy.ParameterCollection()
tp = TransitionParser(model, cluster_file, vocab_acts)
return model, tp, train, dev