generated from klb2/reproducible-paper-python-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
43 lines (35 loc) · 1.3 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from typing import Iterable, Any
import numpy as np
def is_binary(x):
x = np.array(x)
return ((x == 0) | (x == 1)).all()
def is_feasible_solution(assignments: np.array, capacities: Iterable[float],
weights: Iterable[float], profits: np.array,
raise_error: bool = False):
assignments = np.array(assignments)
num_items = len(weights)
num_ks = len(capacities)
error_msg = None
if not np.all(np.shape(assignments) == (num_items, num_ks)):
error_msg = "There is a mismatch of dimensions of the assigment matrix. It needs to be (num_items x num_knapsacks)."
if not is_binary(assignments):
error_msg = "The assignment matrix needs to be binary."
if np.any(np.sum(assignments, axis=1) > 1):
error_msg = "Each element can only by assigned at most once."
if error_msg is not None:
if raise_error:
raise ValueError(error_msg)
else:
return False
loads = weights @ assignments
if np.any(loads > capacities):
error_msg = "The capacity constraint is violated"
if error_msg is None:
return True
else:
if raise_error:
raise ValueError(error_msg)
else:
return False
def to_decibel(value):
return 10*np.log10(value)