forked from openai/blocksparse
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathMakefile
189 lines (156 loc) · 6.2 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
TARGET=./build
.PHONY: all compile clean
all: compile
compile: blocksparse/blocksparse_ops.so
python setup.py bdist_wheel --universal
clean:
rm -vfr $(TARGET)
release: compile
BRANCH=$(shell git rev-parse --abbrev-ref HEAD); if [ "$$BRANCH" != "master" ]; then echo "--- ERROR: refusing to build non-master branch"; exit 1; fi
@git diff-index --quiet HEAD -- || ( echo '--- ERROR: will not build while git tree is dirty! please commit your changes. ---' && exit 1 )
# hacky way to get the version from wheel name
$(eval VERSION := $(shell ls -th dist/*.whl | head -1 |awk '{split($$1,r,"-");print r[2]}')) # '
git tag v${VERSION}
git push origin v${VERSION}
# Upload the binary wheel to PyPi. Needs `twine` installed and configured with your PyPi credentials.
twine upload $(shell ls -th dist/*.whl | head -1)
CUDA_HOME?=/usr/local/cuda
NV_INC?=$(CUDA_HOME)/include
NV_LIB?=$(CUDA_HOME)/lib64
NCCL_HOME?=/usr/local/nccl
NCCL_INC?=$(NCCL_HOME)/include
NCCL_LIB?=$(NCCL_HOME)/lib
MPI_HOME?=/usr/lib/mpich
MPI_INC?=$(MPI_HOME)/include
MPI_LIB?=$(MPI_HOME)/lib
TF_INC=$(shell python -c 'from os.path import dirname; import tensorflow as tf; print(dirname(dirname(tf.sysconfig.get_include())))')
TF_LIB=$(shell python -c 'import tensorflow as tf; print(tf.sysconfig.get_lib())')
TF_ABI=$(shell python -c 'import tensorflow as tf; print(tf.__cxx11_abi_flag__ if "__cxx11_abi_flag__" in tf.__dict__ else 0)')
TF_VERSION=$(shell python -c 'import tensorflow as tf; print(tf.__version__)')
TF_NEW=0
ifeq ($(TF_VERSION),1.15.2)
TF_LIB=$(shell python -c 'import tensorflow_core as tf; print(tf.sysconfig.get_lib())')
TF_NEW=1
endif
CCFLAGS=-std=c++11 -O3 -fPIC -DGOOGLE_CUDA=1 -D_GLIBCXX_USE_CXX11_ABI=$(TF_ABI) \
-DTF_NEW=$(TF_NEW) \
-I$(TARGET) \
-I$(NV_INC) \
-I$(TF_INC)/tensorflow/include \
-I$(TF_INC)/tensorflow/include/external/nsync/public \
-I$(TF_INC)/external/local_config_cuda/cuda \
-I$(NCCL_INC) \
-I$(MPI_INC) \
-I/usr/local
ifeq ($(TF_VERSION),1.15.2)
CCFLAGS +=-I$(TF_INC)/tensorflow_core/include
endif
TF_CFLAGS := $(shell python -c 'import tensorflow as tf; print(" ".join(tf.sysconfig.get_compile_flags()))')
NVCCFLAGS=-DGOOGLE_CUDA=1 -D_GLIBCXX_USE_CXX11_ABI=$(TF_ABI) -O3 -Xcompiler -fPIC -std=c++11 --prec-div=false --prec-sqrt=false \
-g $(TF_CFLAGS) -x cu -DNDEBUG --expt-relaxed-constexpr \
-gencode=arch=compute_35,code=sm_35 \
-gencode=arch=compute_50,code=sm_50 \
-gencode=arch=compute_52,code=sm_52 \
-gencode=arch=compute_60,code=sm_60 \
-gencode=arch=compute_61,code=sm_61 \
-gencode=arch=compute_70,code=sm_70 \
-gencode=arch=compute_70,code=compute_70
# --keep --keep-dir tmp
TF_LFLAGS := $(shell python -c 'import tensorflow as tf; print(" ".join(tf.sysconfig.get_link_flags()))')
LDFLAGS = -shared ${TF_LFLAGS}
OBJS=\
$(TARGET)/batch_norm_op.o \
$(TARGET)/blocksparse_conv_op.o \
$(TARGET)/blocksparse_kernels.o \
$(TARGET)/blocksparse_l2_norm_op.o \
$(TARGET)/blocksparse_matmul_op.o \
$(TARGET)/bst_op.o \
$(TARGET)/cuda_stream.o \
$(TARGET)/cwise_linear_op.o \
$(TARGET)/edge_bias_op.o \
$(TARGET)/ew_op.o \
$(TARGET)/gpu_types.o \
$(TARGET)/layer_norm_op.o \
$(TARGET)/lstm_op.o \
$(TARGET)/optimize_op.o \
$(TARGET)/quantize_op.o \
$(TARGET)/transformer_op.o \
$(TARGET)/embedding_op.o \
$(TARGET)/matmul_op.o \
$(TARGET)/nccl_op.o
CU_OBJS=\
$(TARGET)/batch_norm_op_gpu.cu.o \
$(TARGET)/blocksparse_l2_norm_op_gpu.cu.o \
$(TARGET)/blocksparse_matmul_op_gpu.cu.o \
$(TARGET)/blocksparse_hgemm_cn_64_op_gpu.cu.o \
$(TARGET)/blocksparse_hgemm_cn_128_op_gpu.cu.o \
$(TARGET)/blocksparse_hgemm_nc_op_gpu.cu.o \
$(TARGET)/bst_hgemm_op_gpu.cu.o \
$(TARGET)/bst_sgemm_op_gpu.cu.o \
$(TARGET)/bst_softmax_op_gpu.cu.o \
$(TARGET)/cwise_linear_op_gpu.cu.o \
$(TARGET)/edge_bias_op_gpu.cu.o \
$(TARGET)/ew_op_gpu.cu.o \
$(TARGET)/layer_norm_cn_op_gpu.cu.o \
$(TARGET)/layer_norm_nc_op_gpu.cu.o \
$(TARGET)/lstm_op_gpu.cu.o \
$(TARGET)/optimize_op_gpu.cu.o \
$(TARGET)/quantize_op_gpu.cu.o \
$(TARGET)/transformer_op_gpu.cu.o \
$(TARGET)/embedding_op_gpu.cu.o \
$(TARGET)/matmul_op_gpu.cu.o
$(TARGET)/blocksparse_kernels.h: src/sass/*.sass
mkdir -p $(shell dirname $@)
python generate_kernels.py
blocksparse/blocksparse_ops.so: $(OBJS) $(CU_OBJS)
g++ $^ -shared -o $@ -L$(TF_LIB) -L$(NV_LIB) ${LDFLAGS} -lcudart -lcuda -L$(NCCL_LIB) -L$(MPI_LIB) -lnccl -lmpi
$(TARGET)/%.cu.o: src/%.cu $(TARGET)/blocksparse_kernels.h
mkdir -p $(shell dirname $@)
nvcc $(NVCCFLAGS) -c $< -o $@
$(TARGET)/%.o: src/%.cc src/*.h $(TARGET)/blocksparse_kernels.h
mkdir -p $(shell dirname $@)
g++ $(CCFLAGS) -c $< -o $@
# bazel-0.17.1-installer-linux-x86_64.sh (--user)
# NVIDIA-Linux-x86_64-396.37.run
# cuda_9.2.148_396.37_linux
# cudnn-9.2-linux-x64-v7.2.1.38.tgz
# nccl_2.2.13-1+cuda9.2_x86_64.txz
# apt-get install mpich
# uncomment:
# https://github.com/tensorflow/tensorflow/blob/r1.10/tensorflow/core/kernels/batch_matmul_op_real.cc#L35
# ls -l /usr/local
# lrwxrwxrwx 1 root root 19 Jul 14 13:11 cuda -> /usr/local/cuda-9.2/
# drwxr-xr-x 18 root root 4096 Sep 14 16:12 cuda-9.2/
# lrwxrwxrwx 1 root root 39 Jul 12 17:01 nccl -> /usr/local/nccl_2.2.13-1+cuda9.2_x86_64/
# drwxr-xr-x 4 root root 4096 Jul 12 16:27 nccl_2.2.13-1+cuda9.2_x86_64/
# export TF_NEED_CUDA=1
# export TF_NEED_MKL=0
# export TF_NEED_GCP=0
# export TF_NEED_HDFS=0
# export TF_NEED_OPENCL=0
# export TF_NEED_AWS=0
# export TF_NEED_JEMALLOC=0
# export TF_NEED_KAFKA=0
# export TF_NEED_OPENCL_SYCL=0
# export TF_NEED_COMPUTECPP=0
# export TF_CUDA_CLANG=0
# export TF_NEED_TENSORRT=0
# export TF_ENABLE_XLA=0
# export TF_NEED_GDR=0
# export TF_NEED_VERBS=0
# export TF_NEED_MPI=0
# export TF_CUDA_VERSION="9.2"
# export TF_CUDNN_VERSION="7.2"
# export TF_NCCL_VERSION="2.2"
# export TF_CUDA_COMPUTE_CAPABILITIES="6.0,7.0"
# export GCC_HOST_COMPILER_PATH="/usr/bin/gcc"
# export CUDA_TOOLKIT_PATH="/usr/local/cuda"
# export CUDNN_INSTALL_PATH="/usr/local/cuda"
# export NCCL_INSTALL_PATH="/usr/local/nccl"
# alias tfbuild0="bazel build --config=opt --config=cuda //tensorflow/tools/pip_package:build_pip_package"
# alias tfbuild1="bazel-bin/tensorflow/tools/pip_package/build_pip_package ~"
# alias tfbuild2="pip uninstall tensorflow"
# alias tfbuild3="pip install ~/tensorflow-*.whl"
# git clone blocksparse
# make compile
# pip install dist/*.whl