-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathpathnet.py
144 lines (124 loc) · 5.37 KB
/
pathnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.autograd import gradcheck
class Net(nn.Module):
def __init__(self, args):
super(Net, self).__init__()
self.args = args
self.final_layers = []
self.init(None)
def init(self, best_path):
if best_path is None:
best_path = [[None] * self.args.M] * self.args.L
neuron_num = self.args.neuron_num
module_num = [self.args.M] * self.args.L
#module_num = self.args.module_num
"""Initialize all parameters"""
self.fc1 = []
self.fc2 = []
self.fc3 = []
for i in range(module_num[0]):
if not i in best_path[0]:
"""All parameters should be declared as member variable, so I think this is the simplest way to do so"""
if not self.args.cifar_svhn:
exec("self.m1" + str(i) + " = nn.Linear(28*28," + str(neuron_num) + ")")
else:
exec("self.m1" + str(i) + " = nn.Linear(32*32*3," + str(neuron_num) + ")")
exec("self.fc1.append(self.m1" + str(i) + ")")
for i in range(module_num[1]):
if not i in best_path[1]:
exec("self.m2" + str(i) + " = nn.Linear(" + str(neuron_num) + "," + str(neuron_num) + ")")
exec("self.fc2.append(self.m2" + str(i) + ")")
for i in range(module_num[2]):
if not i in best_path[2]:
#exec("self.m3" + str(i) + " = nn.Linear(" + str(neuron_num) + ", 10)")
exec("self.m3" + str(i) + " = nn.Linear(" + str(neuron_num) + "," + str(neuron_num) + ")")
exec("self.fc3.append(self.m3" + str(i) + ")")
"""final layer which is not inclued in pathnet. Independent for each task"""
if len(self.final_layers) < 1:
self.final_layer1 = nn.Linear(neuron_num, self.args.readout_num)
self.final_layers.append(self.final_layer1)
else:
self.final_layer2 = nn.Linear(neuron_num, self.args.readout_num)
self.final_layers.append(self.final_layer2)
trainable_params = []
params_set = [self.fc1, self.fc2, self.fc3]
for path, params in zip(best_path, params_set):
for i, param in enumerate(params):
if i in path:
param.requires_grad = False
else:
p = {'params': param.parameters()}
trainable_params.append(p)
p = {'params': self.final_layers[-1].parameters()}
trainable_params.append(p)
self.optimizer = optim.SGD(trainable_params, lr=self.args.lr)
if self.args.cuda:
self.cuda()
def forward(self, x, path, last):
if not self.args.cifar_svhn:
x = x.view(-1, 28*28)
else:
x = x.view(-1, 32*32*3)
M = self.args.M
#for i in range(self.args.L):
y = F.relu(self.fc1[path[0][0]](x))
for j in range(1,self.args.N):
y += F.relu(self.fc1[path[0][j]](x))
x = y
y = F.relu(self.fc2[path[1][0]](x))
for j in range(1,self.args.N):
y += F.relu(self.fc2[path[1][j]](x))
x = y
y = F.relu(self.fc3[path[2][0]](x))
for j in range(1,self.args.N):
y += F.relu(self.fc3[path[2][j]](x))
x = y
'''
x = F.relu(self.fc1[path[0][0]](x)) + F.relu(self.fc1[path[0][1]](x)) + F.relu(self.fc1[path[0][2]](x))
x = F.relu(self.fc2[path[1][0]](x)) + F.relu(self.fc2[path[1][1]](x)) + F.relu(self.fc2[path[1][2]](x))
x = F.relu(self.fc3[path[2][0]](x)) + F.relu(self.fc3[path[2][1]](x)) + F.relu(self.fc3[path[2][2]](x))
'''
x = self.final_layers[last](x)
return x
def train_model(self, train_loader, path, num_batch):
self.train()
fitness = 0
train_len = 0
for batch_idx, (data, target) in enumerate(train_loader):
if self.args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
self.optimizer.zero_grad()
output = self(data, path, -1)
pred = output.data.max(1)[1] # get the index of the max log-probability
fitness += pred.eq(target.data).cpu().sum()
train_len += len(target.data)
loss = F.cross_entropy(output, target)
loss.backward()
self.optimizer.step()
if not batch_idx < num_batch -1:
break
fitness = fitness / train_len
return fitness
def test_model(self, test_loader, path, last):
self.eval()
fitness = 0
train_len = 0
for batch_idx, (data, target) in enumerate(test_loader):
if self.args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
self.optimizer.zero_grad()
output = self(data, path, last)
pred = output.data.max(1)[1] # get the index of the max log-probability
fitness += pred.eq(target.data).cpu().sum()
train_len += len(target.data)
if batch_idx > 1000:
break
fitness = fitness / train_len
return fitness