-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ksae.py
328 lines (265 loc) · 12.2 KB
/
train_ksae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
from types import SimpleNamespace
import sys
import torch
sys.path.append("..")
from training.config import SDSAERunnerConfig
from training.sd_activations_store import SDActivationsStore
from typing import Optional
import wandb
import tqdm
from training.k_sparse_autoencoder import SparseAutoencoder, unit_norm_decoder_, unit_norm_decoder_grad_adjustment_
import argparse
def weighted_average(points: torch.Tensor, weights: torch.Tensor):
weights = weights / weights.sum()
return (points * weights.view(-1, 1)).sum(dim=0)
@torch.no_grad()
def geometric_median_objective(
median: torch.Tensor, points: torch.Tensor, weights: torch.Tensor
) -> torch.Tensor:
norms = torch.linalg.norm(points - median.view(1, -1), dim=1) # type: ignore
return (norms * weights).sum()
def compute_geometric_median(
points: torch.Tensor,
weights: Optional[torch.Tensor] = None,
eps: float = 1e-6,
maxiter: int = 100,
ftol: float = 1e-20,
do_log: bool = False,
):
with torch.no_grad():
if weights is None:
weights = torch.ones((points.shape[0],), device=points.device)
new_weights = weights
median = weighted_average(points, weights)
objective_value = geometric_median_objective(median, points, weights)
if do_log:
logs = [objective_value]
else:
logs = None
early_termination = False
pbar = tqdm.tqdm(range(maxiter))
for _ in pbar:
prev_obj_value = objective_value
norms = torch.linalg.norm(points - median.view(1, -1), dim=1) # type: ignore
new_weights = weights / torch.clamp(norms, min=eps)
median = weighted_average(points, new_weights)
objective_value = geometric_median_objective(median, points, weights)
if logs is not None:
logs.append(objective_value)
if abs(prev_obj_value - objective_value) <= ftol * objective_value:
early_termination = True
break
pbar.set_description(f"Objective value: {objective_value:.4f}")
median = weighted_average(points, new_weights) # allow autodiff to track it
return SimpleNamespace(
median=median,
new_weights=new_weights,
termination=(
"function value converged within tolerance"
if early_termination
else "maximum iterations reached"
),
logs=logs,
)
class FeaturesStats:
def __init__(self, dim, logger, device):
self.dim = dim
self.logger = logger
self.device = device
self.reinit()
def reinit(self):
self.n_activated = torch.zeros(self.dim, dtype=torch.long, device=self.device)
self.n = 0
def update(self, inds):
self.n += inds.shape[0]
inds = inds.flatten().detach()
self.n_activated.scatter_add_(0, inds, torch.ones_like(inds))
def log(self):
self.logger.logkv('activated', (self.n_activated / self.n + 1e-9).log10().cpu().numpy())
RANK = 0
class Logger:
def __init__(self, sae_name, **kws):
self.vals = {}
self.enabled = (RANK == 0) and not kws.pop("dummy", False)
self.sae_name = sae_name
def logkv(self, k, v):
if self.enabled:
self.vals[f'{k}'] = v.detach() if isinstance(v, torch.Tensor) else v
return v
def dumpkvs(self, step):
if self.enabled:
wandb.log(self.vals, step=step)
self.vals = {}
def init_from_data_(ae, stats_acts_sample):
ae.pre_bias.data = (
compute_geometric_median(stats_acts_sample[:32768].float().cpu()).median.to(ae.device).float()
)
def explained_variance(recons, x):
# Compute the variance of the difference
diff = x - recons
diff_var = torch.var(diff, dim=0, unbiased=False)
# Compute the variance of the original tensor
x_var = torch.var(x, dim=0, unbiased=False)
# Avoid division by zero
explained_var = 1 - diff_var / (x_var + 1e-8)
return explained_var.mean()
def train_ksae_on_sd(
k_sparse_autoencoder: SparseAutoencoder,
activation_store: SDActivationsStore,
cfg: SDSAERunnerConfig
):
batch_size =cfg.batch_size
total_training_tokens = cfg.total_training_tokens
logger = Logger(
sae_name=cfg.sae_name,
dummy=False,
)
n_training_steps = 0
n_training_tokens = 0
optimizer = torch.optim.Adam(k_sparse_autoencoder.parameters(), lr=cfg.lr, eps=cfg.eps, fused=True)
stats_acts_sample = torch.cat(
[activation_store.next_batch().cpu() for _ in range(8)], dim=0
)
init_from_data_(k_sparse_autoencoder, stats_acts_sample)
mse_scale = (
1 / ((stats_acts_sample.float().mean(dim=0) - stats_acts_sample.float()) ** 2).mean()
)
mse_scale = mse_scale.item()
k_sparse_autoencoder.mse_scale = mse_scale
if cfg.log_to_wandb:
wandb.init(
config = vars(cfg),
project=cfg.wandb_project,
tags = [
str(cfg.batch_size),
cfg.block_name,
str(cfg.d_in),
str(cfg.k),
str(cfg.auxk),
str(cfg.lr),
]
)
fstats = FeaturesStats(cfg.d_sae, logger, cfg.device)
k_sparse_autoencoder.train()
k_sparse_autoencoder.to(cfg.device)
pbar = tqdm.tqdm(total=total_training_tokens, desc="Training SAE")
while n_training_tokens < total_training_tokens:
optimizer.zero_grad()
sae_in = activation_store.next_batch().to(cfg.device)
sae_out, loss, info = k_sparse_autoencoder(
sae_in,
)
n_training_tokens += batch_size
with torch.no_grad():
fstats.update(info['inds'])
bs = sae_in.shape[0]
logger.logkv('l0', info['l0'])
logger.logkv('not-activated 1e4', (k_sparse_autoencoder.stats_last_nonzero > 1e4 / bs).mean(dtype=float).item())
logger.logkv('not-activated 1e6', (k_sparse_autoencoder.stats_last_nonzero > 1e6 / bs).mean(dtype=float).item())
logger.logkv('not-activated 1e7', (k_sparse_autoencoder.stats_last_nonzero > 1e7 / bs).mean(dtype=float).item())
logger.logkv('explained variance', explained_variance(sae_out, sae_in))
logger.logkv('l2_div', (torch.linalg.norm(sae_out, dim=1) / torch.linalg.norm(sae_in, dim=1)).mean())
logger.logkv('train_recons', info['train_recons'])
logger.logkv('train_maxk_recons', info['train_maxk_recons'])
if cfg.log_to_wandb and ((n_training_steps + 1) % cfg.wandb_log_frequency == 0):
fstats.log()
fstats.reinit()
if "cuda" in str(cfg.device):
torch.cuda.empty_cache()
if ((n_training_steps + 1) % cfg.save_interval == 0):
k_sparse_autoencoder.save_to_disk(f"{cfg.save_path}/{n_training_steps + 1}")
pbar.set_description(
f"{n_training_steps}| MSE Loss {loss.item():.3f}"
)
pbar.update(batch_size)
loss.backward()
unit_norm_decoder_(k_sparse_autoencoder)
unit_norm_decoder_grad_adjustment_(k_sparse_autoencoder)
optimizer.step()
n_training_steps += 1
logger.dumpkvs(n_training_steps)
return k_sparse_autoencoder
def main(cfg):
k_sparse_autoencoder = SparseAutoencoder(n_dirs_local=cfg.d_sae,
d_model=cfg.d_in,
k=cfg.k,
auxk=cfg.auxk,
dead_steps_threshold=cfg.dead_toks_threshold //cfg.batch_size,
auxk_coef = cfg.auxk_coef)
activations_loader = SDActivationsStore(path_to_chunks=cfg.paths_to_latents,
block_name=cfg.block_name,
batch_size=cfg.batch_size)
if cfg.log_to_wandb:
wandb.init(project=cfg.wandb_project, config=cfg, name=cfg.run_name)
# train SAE
k_sparse_autoencoder = train_ksae_on_sd(
k_sparse_autoencoder, activations_loader, cfg
)
k_sparse_autoencoder.save_to_disk(f"{cfg.save_path}/final") # # save sae to checkpoints folder
if cfg.log_to_wandb:
wandb.finish()
return k_sparse_autoencoder
def parse_args():
parser = argparse.ArgumentParser(description="Parse SDSAERunnerConfig parameters")
# Add arguments with defaults
parser.add_argument('--paths_to_latents', type=str, default="I2P", help="Directory for extracted features")
parser.add_argument('--block_name', type=str, default="text_encoder.text_model.encoder.layers.10.28", help="Block name")
parser.add_argument('--use_cached_activations', action='store_true', help="Use cached activations", default=True)
parser.add_argument('--d_in', type=int, default=2048, help="Input dimensionality")
parser.add_argument('--auxk', type=str, default=256, help='Auxiliary k coefficient (auxk_coef)')
# SAE Parameters
parser.add_argument('--expansion_factor', type=int, default=32, help="Expansion factor")
parser.add_argument('--b_dec_init_method', type=str, default='mean', help="Decoder initialization method")
parser.add_argument('--k', type=int, default=32, help="Number of clusters")
# Training Parameters
parser.add_argument('--lr', type=float, default=0.0004, help="Learning rate")
parser.add_argument('--lr_scheduler_name', type=str, default='constantwithwarmup', help="Learning rate scheduler name")
parser.add_argument('--batch_size', type=int, default=4096, help="Batch size")
parser.add_argument('--lr_warm_up_steps', type=int, default=500, help="Number of warm-up steps")
parser.add_argument('--epoch', type=int, default=1000, help="Total training epochs")
parser.add_argument('--total_training_tokens', type=int, default=83886080, help="Total training tokens")
parser.add_argument('--dead_feature_threshold', type=float, default=1e-6, help="Dead feature threshold")
parser.add_argument('--auxk_coef', type=str, default="1/32", help='Auxiliary k coefficient (auxk_coef)')
# WANDB
parser.add_argument('--log_to_wandb', action='store_true', default=True, help="Log to WANDB")
parser.add_argument('--wandb_project', type=str, default='steerers', help="WANDB project name")
parser.add_argument('--wandb_entity', type=str, default=None, help="WANDB entity")
parser.add_argument('--wandb_log_frequency', type=int, default=500, help="WANDB log frequency")
# Misc
parser.add_argument('--device', type=str, default="cuda", help="Device to use (e.g., cuda, cpu)")
parser.add_argument('--seed', type=int, default=42, help="Random seed")
parser.add_argument('--checkpoint_path', type=str, default="Checkpoints", help="Checkpoint path")
parser.add_argument('--dtype', type=str, default="float32", help="Data type (e.g., float32)")
parser.add_argument('--save_interval', type=int, default=5000, help='Save interval (save_interval)')
return parser.parse_args()
def args_to_config(args):
return SDSAERunnerConfig(
paths_to_latents=args.paths_to_latents,
block_name=args.block_name,
use_cached_activations=args.use_cached_activations,
d_in=args.d_in,
expansion_factor=args.expansion_factor,
b_dec_init_method=args.b_dec_init_method,
k=args.k,
auxk = args.auxk,
lr=args.lr,
lr_scheduler_name=args.lr_scheduler_name,
batch_size=args.batch_size,
lr_warm_up_steps=args.lr_warm_up_steps,
total_training_tokens=args.total_training_tokens,
dead_feature_threshold=args.dead_feature_threshold,
log_to_wandb=args.log_to_wandb,
wandb_project=args.wandb_project,
wandb_entity=args.wandb_entity,
wandb_log_frequency=args.wandb_log_frequency,
device=args.device,
seed=args.seed,
save_path_base=args.checkpoint_path,
dtype=getattr(torch, args.dtype)
)
if __name__ == "__main__":
args = parse_args()
cfg = args_to_config(args)
print(cfg)
torch.cuda.empty_cache()
k_sparse_autoencoder = main(cfg)