-
Notifications
You must be signed in to change notification settings - Fork 271
/
Copy pathsam.c
723 lines (624 loc) · 24.6 KB
/
sam.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
/* Copyright (C) 2017-2020 by Jacob Alexander
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// ----- Includes -----
// Debug Includes
#if defined(_bootloader_)
#include <inttypes.h>
#include <debug.h>
#else
#include <print.h>
#include <led.h>
#endif
// Local Includes
#include "entropy.h"
#include "sam.h"
#include "sleep.h"
#include "sysview.h"
// ASF Includes
#include <sam/drivers/efc/efc.h>
#include <sam/services/flash_efc/flash_efc.h>
#include <common/services/clock/osc.h>
#include <common/services/usb/udc/udc.h>
#define WDT_TICK_US (128 * 1000000 / BOARD_FREQ_SLCK_XTAL)
#define WDT_MAX_VALUE 4095
#define TRACE_BUFFER_SIZE 256
// ----- Variables -----
const uint8_t sys_reset_to_loader_magic[22] = "\xff\x00\x7fRESET TO LOADER\x7f\x00\xff";
/* Initialize segments */
extern uint32_t _sfixed;
extern uint32_t _efixed;
extern uint32_t _etext;
extern uint32_t _srelocate;
extern uint32_t _erelocate;
extern uint32_t _szero;
extern uint32_t _ezero;
extern uint32_t _sstack;
extern uint32_t _estack;
extern uint32_t _ram_start_, _ram_end_;
extern uint32_t _sramfunc, _eramfunc;
extern uint32_t _sdata, _edata;
// Unique Id storage variable
// Must be read from flash using ReadUniqueID()
uint32_t sam_UniqueId[4];
uintptr_t __stack_chk_guard = 0xdeadbeef;
//__attribute__((__aligned__(TRACE_BUFFER_SIZE * sizeof(uint32_t)))) uint32_t mtb[TRACE_BUFFER_SIZE];
// ----- Function Declarations -----
extern int main();
void ResetHandler();
// ----- Interrupts -----
// NVIC - Default ISR
void fault_isr()
{
print("Fault!" NL );
#if defined(FLASH_DEBUG)
// Reset GPNVM bits to jump back to SAM-BA
flash_clear_gpnvm(1);
Reset_CleanupExternal();
RSTC->RSTC_CR = RSTC_CR_KEY_PASSWD | RSTC_CR_EXTRST;
#else
#if defined(DEBUG) && defined(JLINK)
asm volatile("BKPT #01");
#else
while ( 1 )
{
// keep polling some communication while in fault
// mode, so we don't completely die.
/*if ( SIM_SCGC4 & SIM_SCGC4_USBOTG ) usb_isr();
if ( SIM_SCGC4 & SIM_SCGC4_UART0 ) uart0_status_isr();
if ( SIM_SCGC4 & SIM_SCGC4_UART1 ) uart1_status_isr();
if ( SIM_SCGC4 & SIM_SCGC4_UART2 ) uart2_status_isr();*/
}
#endif
#endif
}
// Stack Overflow Interrupt
void __stack_chk_fail(void)
{
uint32_t sp = __get_MSP();
print("Stack overflow!" NL );
print(" SP = ");
#if defined(_bootloader_)
printHex(sp);
#else
printHex32(sp);
#endif
print(NL NL);
fault_isr();
}
// Default ISR if not used
void unused_isr()
{
Cortex_IRQ irq = get_current_isr();
print("Unhandled ISR!" NL);
print(" IRQn = ");
#if defined(_bootloader_)
printHex(irq);
#else
printHex32(irq);
#endif
print(NL NL);
fault_isr();
}
void __attribute__((naked)) debug_isr ( void ) {
STACKED_ISR(hardfault_handler);
}
void __attribute__((naked)) mpu_isr ( void ) {
STACKED_ISR(memfault_handler);
}
void __attribute__((naked)) bus_isr ( void ) {
STACKED_ISR(busfault_handler);
}
void __attribute__((naked)) usage_isr ( void ) {
STACKED_ISR(usagefault_handler);
}
// NVIC - SysTick ISR
extern volatile uint32_t systick_millis_count;
void systick_default_isr()
{
SEGGER_SYSVIEW_RecordEnterISR();
systick_millis_count++;
// Not necessary in bootloader
#if !defined(_bootloader_)
CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
DWT->CTRL &= DWT_CTRL_CYCCNTENA_Msk;
// Check to see if SysTick is being starved by another IRQ
// 12 cycle IRQ latency (plus some extra)
// XXX (HaaTa) There seems to be a CPU bug where you need to wait some clock cycles before you can
// clear the CYCCNT register on SAM4S (this wasn't the case on Kinetis)
// TODO (HaaTa) Determine what is starving IRQs by about 2000 cycles
if ( DWT->CYCCNT > F_CPU / 1000 + 30 )
{
/* XXX (HaaTa) The printing of this message is causing LED buffers to get clobbered (likely due to frame overflows)
erro_printNL("SysTick is being starved by another IRQ...");
printInt32( DWT->CYCCNT );
print(" vs. ");
printInt32( F_CPU / 1000 );
print(NL);
*/
}
DWT->CYCCNT = 0;
DWT->CTRL |= DWT_CTRL_CYCCNTENA_Msk;
#endif
SEGGER_SYSVIEW_RecordExitISRToScheduler();
}
/* Cortex-M4 core handlers */
void NMI_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void HardFault_Handler ( void ) __attribute__ ((weak, alias("fault_isr")));
void MemManage_Handler ( void ) __attribute__ ((weak, alias("mpu_isr")));
void BusFault_Handler ( void ) __attribute__ ((weak, alias("bus_isr")));
void UsageFault_Handler ( void ) __attribute__ ((weak, alias("usage_isr")));
void SVC_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void DebugMon_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void PendSV_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void SysTick_Handler ( void ) __attribute__ ((weak, alias("systick_default_isr")));
/* Peripherals handlers */
void SUPC_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void RSTC_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void RTC_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void RTT_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
//void WDT_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void PMC_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void EFC0_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
#ifdef _SAM4S_EFC1_INSTANCE_
void EFC1_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
#endif /* _SAM4S_EFC1_INSTANCE_ */
void UART0_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void UART1_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void PIOA_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void PIOB_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
#ifdef _SAM4S_PIOC_INSTANCE_
void PIOC_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
#endif /* _SAM4S_PIOC_INSTANCE_ */
void USART0_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
#ifdef _SAM4S_USART1_INSTANCE_
void USART1_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
#endif /* _SAM4S_USART1_INSTANCE_ */
#ifdef _SAM4S_HSMCI_INSTANCE_
void HSMCI_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
#endif /* _SAM4S_HSMCI_INSTANCE_ */
void TWI0_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void TWI1_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void SPI_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void SSC_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void TC0_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void TC1_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void TC2_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void TC3_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void TC4_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void TC5_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void ADC_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
#ifdef _SAM4S_DACC_INSTANCE_
void DACC_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
#endif /* _SAM4S_DACC_INSTANCE_ */
void PWM_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void CRCCU_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void ACC_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void UDP_Handler ( void ) __attribute__ ((weak, alias("unused_isr")));
void WDT_Handler() {
print("WDT!" NL );
#if defined(DEBUG) && defined(JLINK)
__asm volatile("BKPT #01");
#else
SOFTWARE_RESET();
for( ;; );
#endif
}
/* Exception Table */
/* NOTE: Table alignment requirements mean that bits [6:0] of the table offset are always zero */
__attribute__ ((section(".vectors")))
const DeviceVectors exception_table = {
/* Configure Initial Stack Pointer, using linker-generated symbols */
.pvStack = (void*) (&_estack),
.pfnReset_Handler = (void*) ResetHandler,
.pfnNMI_Handler = (void*) NMI_Handler,
#if defined(DEBUG)
.pfnHardFault_Handler = (void*) debug_isr,
#else
.pfnHardFault_Handler = (void*) HardFault_Handler,
#endif
.pfnMemManage_Handler = (void*) MemManage_Handler,
.pfnBusFault_Handler = (void*) BusFault_Handler,
.pfnUsageFault_Handler = (void*) UsageFault_Handler,
.pfnReserved1_Handler = (void*) (0UL), /* Reserved */
.pfnReserved2_Handler = (void*) (0UL), /* Reserved */
.pfnReserved3_Handler = (void*) (0UL), /* Reserved */
.pfnReserved4_Handler = (void*) (0UL), /* Reserved */
.pfnSVC_Handler = (void*) SVC_Handler,
.pfnDebugMon_Handler = (void*) DebugMon_Handler,
.pfnReserved5_Handler = (void*) (0UL), /* Reserved */
.pfnPendSV_Handler = (void*) PendSV_Handler,
.pfnSysTick_Handler = (void*) SysTick_Handler,
/* Configurable interrupts */
.pfnSUPC_Handler = (void*) SUPC_Handler, /* 0 Supply Controller */
.pfnRSTC_Handler = (void*) RSTC_Handler, /* 1 Reset Controller */
.pfnRTC_Handler = (void*) RTC_Handler, /* 2 Real Time Clock */
.pfnRTT_Handler = (void*) RTT_Handler, /* 3 Real Time Timer */
.pfnWDT_Handler = (void*) WDT_Handler, /* 4 Watchdog Timer */
.pfnPMC_Handler = (void*) PMC_Handler, /* 5 Power Management Controller */
.pfnEFC0_Handler = (void*) EFC0_Handler, /* 6 Enhanced Embedded Flash Controller 0 */
#ifdef _SAM4S_EFC1_INSTANCE_
.pfnEFC1_Handler = (void*) EFC1_Handler, /* 7 Enhanced Embedded Flash Controller 1 */
#else
.pvReserved7 = (void*) (0UL), /* 7 Reserved */
#endif /* _SAM4S_EFC1_INSTANCE_ */
.pfnUART0_Handler = (void*) UART0_Handler, /* 8 UART 0 */
.pfnUART1_Handler = (void*) UART1_Handler, /* 9 UART 1 */
.pvReserved10 = (void*) (0UL), /* 10 Reserved */
.pfnPIOA_Handler = (void*) PIOA_Handler, /* 11 Parallel I/O Controller A */
.pfnPIOB_Handler = (void*) PIOB_Handler, /* 12 Parallel I/O Controller B */
#ifdef _SAM4S_PIOC_INSTANCE_
.pfnPIOC_Handler = (void*) PIOC_Handler, /* 13 Parallel I/O Controller C */
#else
.pvReserved13 = (void*) (0UL), /* 13 Reserved */
#endif /* _SAM4S_PIOC_INSTANCE_ */
.pfnUSART0_Handler = (void*) USART0_Handler, /* 14 USART 0 */
#ifdef _SAM4S_USART1_INSTANCE_
.pfnUSART1_Handler = (void*) USART1_Handler, /* 15 USART 1 */
#else
.pvReserved15 = (void*) (0UL), /* 15 Reserved */
#endif /* _SAM4S_USART1_INSTANCE_ */
.pvReserved16 = (void*) (0UL), /* 16 Reserved */
.pvReserved17 = (void*) (0UL), /* 17 Reserved */
#ifdef _SAM4S_HSMCI_INSTANCE_
.pfnHSMCI_Handler = (void*) HSMCI_Handler, /* 18 Multimedia Card Interface */
#else
.pvReserved18 = (void*) (0UL), /* 18 Reserved */
#endif /* _SAM4S_HSMCI_INSTANCE_ */
.pfnTWI0_Handler = (void*) TWI0_Handler, /* 19 Two Wire Interface 0 */
.pfnTWI1_Handler = (void*) TWI1_Handler, /* 20 Two Wire Interface 1 */
.pfnSPI_Handler = (void*) SPI_Handler, /* 21 Serial Peripheral Interface */
.pfnSSC_Handler = (void*) SSC_Handler, /* 22 Synchronous Serial Controller */
.pfnTC0_Handler = (void*) TC0_Handler, /* 23 Timer/Counter 0 */
.pfnTC1_Handler = (void*) TC1_Handler, /* 24 Timer/Counter 1 */
.pfnTC2_Handler = (void*) TC2_Handler, /* 25 Timer/Counter 2 */
.pfnTC3_Handler = (void*) TC3_Handler, /* 26 Timer/Counter 3 */
.pfnTC4_Handler = (void*) TC4_Handler, /* 27 Timer/Counter 4 */
.pfnTC5_Handler = (void*) TC5_Handler, /* 28 Timer/Counter 5 */
.pfnADC_Handler = (void*) ADC_Handler, /* 29 Analog To Digital Converter */
#ifdef _SAM4S_DACC_INSTANCE_
.pfnDACC_Handler = (void*) DACC_Handler, /* 30 Digital To Analog Converter */
#else
.pvReserved30 = (void*) (0UL), /* 30 Reserved */
#endif /* _SAM4S_DACC_INSTANCE_ */
.pfnPWM_Handler = (void*) PWM_Handler, /* 31 Pulse Width Modulation */
.pfnCRCCU_Handler = (void*) CRCCU_Handler, /* 32 CRC Calculation Unit */
.pfnACC_Handler = (void*) ACC_Handler, /* 33 Analog Comparator */
.pfnUDP_Handler = (void*) UDP_Handler /* 34 USB Device Port */
};
// ----- Flash Configuration -----
// ----- Functions -----
void *memset( void *addr, int val, unsigned int len )
{
#if defined(_cortex_m4_)
// Optimized version of memset we split up the region into several segments
// Adapted from: https://stackoverflow.com/a/57241273/9357160
//
// addr
// * store single bytes
// mid1
// * store words, 4 at a time
// mid2
// * store words, 1 at a time
// mid3
// * store single bytes
// end
//
// For large buffers, most of the time is spent between mid1 and mid2 which is
// highly optimized.
const uint32_t int_size = sizeof(uint32_t);
// find first word-aligned address
uint32_t ptr = (uint32_t) addr;
// get end of memory to set
uint32_t end = ptr + len;
// get location of first word-aligned address at/after the start, but not
// after the end
uint32_t mid1 = (ptr + int_size - 1) / int_size * int_size;
if (mid1 > end)
{
mid1 = end;
}
// get location of last word-aligned address at/before the end
uint32_t mid3 = end / int_size * int_size;
// get end location of optimized section
uint32_t mid2 = mid1 + (mid3 - mid1) / (4 * int_size) * (4 * int_size);
// create a word-sized integer
uint32_t value = 0;
for (uint16_t i = 0; i < int_size; ++i)
{
value <<= 8;
value |= (uint8_t) val;
}
__ASM volatile (
// store bytes
"b Compare1%=\n"
"Store1%=:\n"
"strb %[value], [%[ptr]], #1\n"
"Compare1%=:\n"
"cmp %[ptr], %[mid1]\n"
"bcc Store1%=\n"
// store words optimized
"b Compare2%=\n"
"Store2%=:\n"
"str %[value], [%[ptr]], #4\n"
"str %[value], [%[ptr]], #4\n"
"str %[value], [%[ptr]], #4\n"
"str %[value], [%[ptr]], #4\n"
"Compare2%=:\n"
"cmp %[ptr], %[mid2]\n"
"bcc Store2%=\n"
// store words
"b Compare3%=\n"
"Store3%=:\n"
"str %[value], [%[ptr]], #4\n"
"Compare3%=:\n"
"cmp %[ptr], %[mid3]\n"
"bcc Store3%=\n"
// store bytes
"b Compare4%=\n"
"Store4%=:\n"
"strb %[value], [%[ptr]], #1\n"
"Compare4%=:\n"
"cmp %[ptr], %[end]\n"
"bcc Store4%=\n"
: // no outputs
: [value] "r"(value),
[ptr] "r"(ptr),
[mid1] "r"(mid1),
[mid2] "r"(mid2),
[mid3] "r"(mid3),
[end] "r"(end)
);
return addr;
#else
char *buf = addr;
for (; len > 0; --len, ++buf)
*buf = val;
return (addr);
#endif
}
int memcmp( const void *a, const void *b, unsigned int len )
{
const uint8_t *ap = a, *bp = b;
int val = 0;
for (; len > 0 && (val = *ap - *bp) == 0; --len, ++ap, ++bp)
/* NOTHING */;
return (val);
}
void *memcpy( void *dst, const void *src, unsigned int len )
{
// Fast memcpy (Cortex-M4 only), adapted from:
// https://cboard.cprogramming.com/c-programming/154333-fast-memcpy-alternative-32-bit-embedded-processor-posted-just-fyi-fwiw.html#post1149163
// Cortex-M4 can do unaligned accesses, even for 32-bit values
// Uses 32-bit values to do copies instead of 8-bit (should effectively speed up memcpy by 3x)
#if defined(_cortex_m4_)
uint32_t i;
uint32_t *pLongSrc;
uint32_t *pLongDest;
uint32_t numLongs = len / 4;
uint32_t endLen = len & 0x03;
// Convert byte addressing to long addressing
pLongSrc = (uint32_t*) src;
pLongDest = (uint32_t*) dst;
// Copy long values, disregarding any 32-bit alignment issues
for ( i = 0; i < numLongs; i++ )
{
*pLongDest++ = *pLongSrc++;
}
// Convert back to byte addressing
uint8_t *srcbuf = (uint8_t*) pLongSrc;
uint8_t *dstbuf = (uint8_t*) pLongDest;
// Copy trailing bytes byte-by-byte
for (; endLen > 0; --endLen, ++dstbuf, ++srcbuf)
*dstbuf = *srcbuf;
return (dst);
#else
char *dstbuf = dst;
const char *srcbuf = src;
for (; len > 0; --len, ++dstbuf, ++srcbuf)
*dstbuf = *srcbuf;
return (dst);
#endif
}
// Reads Unique Id into sam_UniqueId buffer
uint32_t ReadUniqueID()
{
// Send Start STUI (Read Unique Identifier)
// Send Stop SPUI (Read Unique Identifier)
// Read 32 x 4 bytes (128 bytes) into sam_UniqueId
return efc_perform_read_sequence( EFC0, EEFC_FCR_FCMD_STUI, EEFC_FCR_FCMD_SPUI, sam_UniqueId, 4 );
}
// Check user signature
// When a new firmware is flashed we need to update the user signature
// This signature is used by the bootloader to determine the firmware version
// The bootloader is responsible for erasing these fields (this way the bootloader can also detect failed flashes)
bool CheckUserSignature()
{
// Read signature, and verify it
FirmwareInfo info;
flash_read_user_signature((uint32_t*)&info, sizeof(FirmwareInfo) / sizeof(uint32_t));
// First check if user signature is empty
// If so, we need to write a new signature
if (info.revision == 0xFFFF)
{
info.revision = BCD_VERSION;
// Write user signature
flash_write_user_signature((uint32_t*)&info, sizeof(FirmwareInfo) / sizeof(uint32_t));
return true;
}
// Next check if the signature is correct
if (info.revision != BCD_VERSION)
{
return false;
}
// All fields are correct
return true;
}
// Read user signature
FirmwareInfo ReadUserSignature()
{
FirmwareInfo info;
flash_read_user_signature((uint32_t*)&info, sizeof(FirmwareInfo) / sizeof(uint32_t));
return info;
}
// Clear user signature
// The user signature should be erased each time a new firmware is flashed
// This is also a way to determine if the firmware has successfully booted
uint32_t EraseUserSignature()
{
return flash_erase_user_signature();
}
// ----- Chip Entry Point -----
// ===== Target frequency (System clock)
// - PLLA source: XTAL = 12MHz
// - PLLA output: XTAL * 20 / 1 = 240MHz
// - System clock source: PLLA
// - System clock prescaler: 2 (divided by 2)
// - System clock: 12 * 20 / 1 / 2 = 120MHz
// ===== Target frequency (USB Clock)
// - PLLB source: XTAL = 12MHz
// - PLLB output: XTAL * 16 / 2 = 96Mhz
// - USB clock source: PLLB
// - USB clock divider: 2 (divided by 2)
// - USB clock: 12 * 16 / 2 / 2 = 48MHz
__attribute__ ((section(".startup")))
void ResetHandler()
{
// Not locked up... Reset the watchdog timer
WDT->WDT_CR = WDT_CR_KEY_PASSWD | WDT_CR_WDRSTT;
uint32_t *pSrc, *pDest;
/* Initialize the relocate segment */
pSrc = &_etext;
pDest = &_srelocate;
if (pSrc != pDest) {
for (; pDest < &_erelocate;) {
*pDest++ = *pSrc++;
}
}
/* Clear the zero segment */
for (pDest = &_szero; pDest < &_ezero;) {
*pDest++ = 0;
}
/* Initialize the stack */
for (pDest = &_sstack; pDest < &_estack;) {
*pDest++ = 0xDEADBEEF;
}
/* Set 6 FWS for Embedded Flash Access according to 120MHz configuration */
EFC0->EEFC_FMR = EEFC_FMR_FWS(5)|EEFC_FMR_CLOE;
#if defined(EFC1) // Only valid for products with two flash banks
EFC1->EEFC_FMR = EEFC_FMR_FWS(5)|EEFC_FMR_CLOE;
#endif // EFC1
/*
* We are coming from a Hard Reset or Backup mode.
* The core is clocked by Internal Fast RC @ 4MHz.
* We intend to use the device @120MHz from external Oscillator.
* Steps are (cf datasheet chapter '29.14 Programming Sequence'):
* 1- Activation of external oscillator
* 2- Switch the MAINCK to the main crystal oscillator
* 3- Wait for the MOSCSELS to be set
* 4- Check the main clock frequency
* 5- Set PLLx and Divider
* 6- Select the master clock and processor clock
* 7- Select the programmable clocks (optional)
*/
PMC->PMC_MCKR = (PMC->PMC_MCKR & (~PMC_MCKR_CSS_Msk)) | PMC_MCKR_CSS_SLOW_CLK;
for ( ; (PMC->PMC_SR & PMC_SR_MCKRDY) != PMC_SR_MCKRDY ; );
/* Step 1 - Activation of external oscillator
* As we are clocking the core from internal Fast RC, we keep the bit CKGR_MOR_MOSCRCEN.
* Main Crystal Oscillator Start-up Time (CKGR_MOR_MOSCXTST) is set to maximum value.
* Then, we wait the startup time to be finished by checking PMC_SR_MOSCXTS in PMC_SR.
*/
PMC->CKGR_MOR = CKGR_MOR_KEY_PASSWD | CKGR_MOR_MOSCXTST(0xfful) | CKGR_MOR_MOSCRCEN | CKGR_MOR_MOSCXTEN;
for ( ; (PMC->PMC_SR & PMC_SR_MOSCXTS) != PMC_SR_MOSCXTS ; );
/* Step 2 - Switch the MAINCK to the main crystal oscillator
* We add the CKGR_MOR_MOSCSEL bit.
* Then we wait for the selection to be done by checking PMC_SR_MOSCSELS in PMC_SR.
*/
PMC->CKGR_MOR = CKGR_MOR_KEY_PASSWD | CKGR_MOR_MOSCXTST(0xfful) | CKGR_MOR_MOSCRCEN | CKGR_MOR_MOSCXTEN | CKGR_MOR_MOSCSEL;
/* Step 3 - Wait for the MOSCSELS to be set */
for ( ; (PMC->PMC_SR & PMC_SR_MOSCSELS) != PMC_SR_MOSCSELS ; );
/* Step 4 - Check the main clock frequency */
/* As written in the DS, we could check the MAINF value here (0x18a2) */
/* Step 5 - Set PLLx and Divider
* The external oscillator is 12MHz. As we intend to clock the system @120MHz,
* we need to multiply the oscillator frequency by 10.
* This can be done by setting MULx to value 9 and DIV to 1.
* We set the maximum PLL Lock time to maximum in CKGR_PLLAR_PLLACOUNT.
*/
//PMC->CKGR_PLLAR = CKGR_PLLAR_ONE | (CKGR_PLLAR_MULA(0x1dul) | CKGR_PLLAR_DIVA(3ul) | CKGR_PLLAR_PLLACOUNT(0x1ul));
PMC->CKGR_PLLAR = CKGR_PLLAR_ONE | (CKGR_PLLAR_MULA(20-1) | CKGR_PLLAR_DIVA(1) | CKGR_PLLAR_PLLACOUNT(0x3ful));
for ( ; (PMC->PMC_SR & PMC_SR_LOCKA) != PMC_SR_LOCKA ; );
PMC->CKGR_PLLBR = (CKGR_PLLBR_MULB(16-1) | CKGR_PLLBR_DIVB(2) | CKGR_PLLBR_PLLBCOUNT(0x3ful));
for ( ; (PMC->PMC_SR & PMC_SR_LOCKB) != PMC_SR_LOCKB ; );
/* Step 6 - Select the master clock and processor clock
* Source for MasterClock will be PLLA output (PMC_MCKR_CSS_PLLA_CLK), with 1/2 frequency division.
* NOTE: Must change prescaler before changing source
*/
PMC->PMC_MCKR = (PMC->PMC_MCKR & (~PMC_MCKR_PRES_Msk)) | PMC_MCKR_PRES_CLK_2;
for ( ; (PMC->PMC_SR & PMC_SR_MCKRDY) != PMC_SR_MCKRDY ; );
PMC->PMC_MCKR = (PMC->PMC_MCKR & (~PMC_MCKR_CSS_Msk)) | PMC_MCKR_CSS_PLLA_CLK;
//PMC->PMC_MCKR = PMC_MCKR_PRES_CLK_2 | PMC_MCKR_CSS_PLLA_CLK;
for ( ; (PMC->PMC_SR & PMC_SR_MCKRDY) != PMC_SR_MCKRDY ; );
/* Set the vector table base address */
pSrc = (uint32_t *) & _sfixed;
SCB->VTOR = ((uint32_t) pSrc);
/* Disable PMC write protection */
//PMC->PMC_WPMR = PMC_WPMR_WPKEY(0x504D43ul) & ~PMC_WPMR_WPEN;
cm4_init();
// Default to no access
mpu_setup_region(0, &_sfixed, &_efixed, MPU_ATTR_FLASH | MPU_ACCESS_RO_ALL | 0);
mpu_setup_region(1,
(uint32_t*)STORAGE_FLASH_START,
(uint32_t*)STORAGE_FLASH_END, MPU_ATTR_FLASH | MPU_ACCESS_RW_ALL | MPU_ATTR_XN);
mpu_setup_region(2, &_sramfunc, &_eramfunc, MPU_ATTR_INTERNAL_SRAM | MPU_ACCESS_RO_ALL | 0);
mpu_setup_region(3, (uint32_t*)_sdata, &_ezero, MPU_ATTR_INTERNAL_SRAM | MPU_ACCESS_RW_ALL | MPU_ATTR_XN);
mpu_setup_region(4, (uint32_t*)_sstack, &_estack, MPU_ATTR_INTERNAL_SRAM | MPU_ACCESS_RW_ALL | MPU_ATTR_XN);
mpu_setup_region(5, PERIPH_START, PERIPH_END, MPU_ATTR_PERIPHERALS | MPU_ACCESS_PRIV_WRITE | MPU_ATTR_XN);
mpu_setup_region(6, SYSTEM_END, SYSTEM_END, MPU_ACCESS_PRIV_WRITE); // Always XN
mpu_enable();
// Initialize the SysTick counter
SysTick->LOAD = (F_CPU / 1000) - 1;
SysTick->VAL = 0;
SysTick->CALIB = F_CPU / 1000 / 8;
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk;
// Enable IRQs
__enable_irq();
// Intialize entropy for random numbers
rand_initialize();
#if !defined(_bootloader_)
init_errorLED();
errorLED(0);
for ( int pos = 0; pos <= sizeof(sys_reset_to_loader_magic)/sizeof(GPBR->SYS_GPBR[0]); pos++ )
GPBR->SYS_GPBR[ pos ] = 0x00000000;
// Read wake reason
wake_status = REG_SUPC_SR;
// Check User Signature
CheckUserSignature();
#endif
// Read Unique ID from flash
ReadUniqueID();
// Start main
main();
while ( 1 ); // Shouldn't get here...
}
bool main_kbd_enable(void)
{
return true;
}