forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
494 lines (419 loc) · 16.1 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import numpy as np
import cv2
import copy
def decode_image(img_path):
with open(img_path, 'rb') as f:
im_read = f.read()
data = np.frombuffer(im_read, dtype='uint8')
im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
img_info = {
"im_shape": np.array(
im.shape[:2], dtype=np.float32),
"scale_factor": np.array(
[1., 1.], dtype=np.float32)
}
return im, img_info
class Resize(object):
"""resize image by target_size and max_size
Args:
target_size (int): the target size of image
keep_ratio (bool): whether keep_ratio or not, default true
interp (int): method of resize
"""
def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR):
if isinstance(target_size, int):
target_size = [target_size, target_size]
self.target_size = target_size
self.keep_ratio = keep_ratio
self.interp = interp
def __call__(self, im, im_info):
"""
Args:
im (np.ndarray): image (np.ndarray)
im_info (dict): info of image
Returns:
im (np.ndarray): processed image (np.ndarray)
im_info (dict): info of processed image
"""
assert len(self.target_size) == 2
assert self.target_size[0] > 0 and self.target_size[1] > 0
im_channel = im.shape[2]
im_scale_y, im_scale_x = self.generate_scale(im)
im = cv2.resize(
im,
None,
None,
fx=im_scale_x,
fy=im_scale_y,
interpolation=self.interp)
im_info['im_shape'] = np.array(im.shape[:2]).astype('float32')
im_info['scale_factor'] = np.array(
[im_scale_y, im_scale_x]).astype('float32')
return im, im_info
def generate_scale(self, im):
"""
Args:
im (np.ndarray): image (np.ndarray)
Returns:
im_scale_x: the resize ratio of X
im_scale_y: the resize ratio of Y
"""
origin_shape = im.shape[:2]
im_c = im.shape[2]
if self.keep_ratio:
im_size_min = np.min(origin_shape)
im_size_max = np.max(origin_shape)
target_size_min = np.min(self.target_size)
target_size_max = np.max(self.target_size)
im_scale = float(target_size_min) / float(im_size_min)
if np.round(im_scale * im_size_max) > target_size_max:
im_scale = float(target_size_max) / float(im_size_max)
im_scale_x = im_scale
im_scale_y = im_scale
else:
resize_h, resize_w = self.target_size
im_scale_y = resize_h / float(origin_shape[0])
im_scale_x = resize_w / float(origin_shape[1])
return im_scale_y, im_scale_x
class NormalizeImage(object):
"""normalize image
Args:
mean (list): im - mean
std (list): im / std
is_scale (bool): whether need im / 255
norm_type (str): type in ['mean_std', 'none']
"""
def __init__(self, mean, std, is_scale=True, norm_type='mean_std'):
self.mean = mean
self.std = std
self.is_scale = is_scale
self.norm_type = norm_type
def __call__(self, im, im_info):
"""
Args:
im (np.ndarray): image (np.ndarray)
im_info (dict): info of image
Returns:
im (np.ndarray): processed image (np.ndarray)
im_info (dict): info of processed image
"""
im = im.astype(np.float32, copy=False)
if self.is_scale:
scale = 1.0 / 255.0
im *= scale
if self.norm_type == 'mean_std':
mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
std = np.array(self.std)[np.newaxis, np.newaxis, :]
im -= mean
im /= std
return im, im_info
class Permute(object):
"""permute image
Args:
to_bgr (bool): whether convert RGB to BGR
channel_first (bool): whether convert HWC to CHW
"""
def __init__(self, ):
super(Permute, self).__init__()
def __call__(self, im, im_info):
"""
Args:
im (np.ndarray): image (np.ndarray)
im_info (dict): info of image
Returns:
im (np.ndarray): processed image (np.ndarray)
im_info (dict): info of processed image
"""
im = im.transpose((2, 0, 1)).copy()
return im, im_info
class PadStride(object):
""" padding image for model with FPN, instead PadBatch(pad_to_stride) in original config
Args:
stride (bool): model with FPN need image shape % stride == 0
"""
def __init__(self, stride=0):
self.coarsest_stride = stride
def __call__(self, im, im_info):
"""
Args:
im (np.ndarray): image (np.ndarray)
im_info (dict): info of image
Returns:
im (np.ndarray): processed image (np.ndarray)
im_info (dict): info of processed image
"""
coarsest_stride = self.coarsest_stride
if coarsest_stride <= 0:
return im, im_info
im_c, im_h, im_w = im.shape
pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride)
pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride)
padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32)
padding_im[:, :im_h, :im_w] = im
return padding_im, im_info
class LetterBoxResize(object):
def __init__(self, target_size):
"""
Resize image to target size, convert normalized xywh to pixel xyxy
format ([x_center, y_center, width, height] -> [x0, y0, x1, y1]).
Args:
target_size (int|list): image target size.
"""
super(LetterBoxResize, self).__init__()
if isinstance(target_size, int):
target_size = [target_size, target_size]
self.target_size = target_size
def letterbox(self, img, height, width, color=(127.5, 127.5, 127.5)):
# letterbox: resize a rectangular image to a padded rectangular
shape = img.shape[:2] # [height, width]
ratio_h = float(height) / shape[0]
ratio_w = float(width) / shape[1]
ratio = min(ratio_h, ratio_w)
new_shape = (round(shape[1] * ratio),
round(shape[0] * ratio)) # [width, height]
padw = (width - new_shape[0]) / 2
padh = (height - new_shape[1]) / 2
top, bottom = round(padh - 0.1), round(padh + 0.1)
left, right = round(padw - 0.1), round(padw + 0.1)
img = cv2.resize(
img, new_shape, interpolation=cv2.INTER_AREA) # resized, no border
img = cv2.copyMakeBorder(
img, top, bottom, left, right, cv2.BORDER_CONSTANT,
value=color) # padded rectangular
return img, ratio, padw, padh
def __call__(self, im, im_info):
"""
Args:
im (np.ndarray): image (np.ndarray)
im_info (dict): info of image
Returns:
im (np.ndarray): processed image (np.ndarray)
im_info (dict): info of processed image
"""
assert len(self.target_size) == 2
assert self.target_size[0] > 0 and self.target_size[1] > 0
height, width = self.target_size
h, w = im.shape[:2]
im, ratio, padw, padh = self.letterbox(im, height=height, width=width)
new_shape = [round(h * ratio), round(w * ratio)]
im_info['im_shape'] = np.array(new_shape, dtype=np.float32)
im_info['scale_factor'] = np.array([ratio, ratio], dtype=np.float32)
return im, im_info
class Pad(object):
def __init__(self, size, fill_value=[114.0, 114.0, 114.0]):
"""
Pad image to a specified size.
Args:
size (list[int]): image target size
fill_value (list[float]): rgb value of pad area, default (114.0, 114.0, 114.0)
"""
super(Pad, self).__init__()
if isinstance(size, int):
size = [size, size]
self.size = size
self.fill_value = fill_value
def __call__(self, im, im_info):
im_h, im_w = im.shape[:2]
h, w = self.size
if h == im_h and w == im_w:
im = im.astype(np.float32)
return im, im_info
canvas = np.ones((h, w, 3), dtype=np.float32)
canvas *= np.array(self.fill_value, dtype=np.float32)
canvas[0:im_h, 0:im_w, :] = im.astype(np.float32)
im = canvas
return im, im_info
def rotate_point(pt, angle_rad):
"""Rotate a point by an angle.
Args:
pt (list[float]): 2 dimensional point to be rotated
angle_rad (float): rotation angle by radian
Returns:
list[float]: Rotated point.
"""
assert len(pt) == 2
sn, cs = np.sin(angle_rad), np.cos(angle_rad)
new_x = pt[0] * cs - pt[1] * sn
new_y = pt[0] * sn + pt[1] * cs
rotated_pt = [new_x, new_y]
return rotated_pt
def _get_3rd_point(a, b):
"""To calculate the affine matrix, three pairs of points are required. This
function is used to get the 3rd point, given 2D points a & b.
The 3rd point is defined by rotating vector `a - b` by 90 degrees
anticlockwise, using b as the rotation center.
Args:
a (np.ndarray): point(x,y)
b (np.ndarray): point(x,y)
Returns:
np.ndarray: The 3rd point.
"""
assert len(a) == 2
assert len(b) == 2
direction = a - b
third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32)
return third_pt
def get_affine_transform(center,
input_size,
rot,
output_size,
shift=(0., 0.),
inv=False):
"""Get the affine transform matrix, given the center/scale/rot/output_size.
Args:
center (np.ndarray[2, ]): Center of the bounding box (x, y).
scale (np.ndarray[2, ]): Scale of the bounding box
wrt [width, height].
rot (float): Rotation angle (degree).
output_size (np.ndarray[2, ]): Size of the destination heatmaps.
shift (0-100%): Shift translation ratio wrt the width/height.
Default (0., 0.).
inv (bool): Option to inverse the affine transform direction.
(inv=False: src->dst or inv=True: dst->src)
Returns:
np.ndarray: The transform matrix.
"""
assert len(center) == 2
assert len(output_size) == 2
assert len(shift) == 2
if not isinstance(input_size, (np.ndarray, list)):
input_size = np.array([input_size, input_size], dtype=np.float32)
scale_tmp = input_size
shift = np.array(shift)
src_w = scale_tmp[0]
dst_w = output_size[0]
dst_h = output_size[1]
rot_rad = np.pi * rot / 180
src_dir = rotate_point([0., src_w * -0.5], rot_rad)
dst_dir = np.array([0., dst_w * -0.5])
src = np.zeros((3, 2), dtype=np.float32)
src[0, :] = center + scale_tmp * shift
src[1, :] = center + src_dir + scale_tmp * shift
src[2, :] = _get_3rd_point(src[0, :], src[1, :])
dst = np.zeros((3, 2), dtype=np.float32)
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])
if inv:
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
else:
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
return trans
class WarpAffine(object):
"""Warp affine the image
"""
def __init__(self,
keep_res=False,
pad=31,
input_h=512,
input_w=512,
scale=0.4,
shift=0.1):
self.keep_res = keep_res
self.pad = pad
self.input_h = input_h
self.input_w = input_w
self.scale = scale
self.shift = shift
def __call__(self, im, im_info):
"""
Args:
im (np.ndarray): image (np.ndarray)
im_info (dict): info of image
Returns:
im (np.ndarray): processed image (np.ndarray)
im_info (dict): info of processed image
"""
img = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
h, w = img.shape[:2]
if self.keep_res:
input_h = (h | self.pad) + 1
input_w = (w | self.pad) + 1
s = np.array([input_w, input_h], dtype=np.float32)
c = np.array([w // 2, h // 2], dtype=np.float32)
else:
s = max(h, w) * 1.0
input_h, input_w = self.input_h, self.input_w
c = np.array([w / 2., h / 2.], dtype=np.float32)
trans_input = get_affine_transform(c, s, 0, [input_w, input_h])
img = cv2.resize(img, (w, h))
inp = cv2.warpAffine(
img, trans_input, (input_w, input_h), flags=cv2.INTER_LINEAR)
return inp, im_info
# keypoint preprocess
def get_warp_matrix(theta, size_input, size_dst, size_target):
"""This code is based on
https://github.com/open-mmlab/mmpose/blob/master/mmpose/core/post_processing/post_transforms.py
Calculate the transformation matrix under the constraint of unbiased.
Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
Data Processing for Human Pose Estimation (CVPR 2020).
Args:
theta (float): Rotation angle in degrees.
size_input (np.ndarray): Size of input image [w, h].
size_dst (np.ndarray): Size of output image [w, h].
size_target (np.ndarray): Size of ROI in input plane [w, h].
Returns:
matrix (np.ndarray): A matrix for transformation.
"""
theta = np.deg2rad(theta)
matrix = np.zeros((2, 3), dtype=np.float32)
scale_x = size_dst[0] / size_target[0]
scale_y = size_dst[1] / size_target[1]
matrix[0, 0] = np.cos(theta) * scale_x
matrix[0, 1] = -np.sin(theta) * scale_x
matrix[0, 2] = scale_x * (
-0.5 * size_input[0] * np.cos(theta) + 0.5 * size_input[1] *
np.sin(theta) + 0.5 * size_target[0])
matrix[1, 0] = np.sin(theta) * scale_y
matrix[1, 1] = np.cos(theta) * scale_y
matrix[1, 2] = scale_y * (
-0.5 * size_input[0] * np.sin(theta) - 0.5 * size_input[1] *
np.cos(theta) + 0.5 * size_target[1])
return matrix
class TopDownEvalAffine(object):
"""apply affine transform to image and coords
Args:
trainsize (list): [w, h], the standard size used to train
use_udp (bool): whether to use Unbiased Data Processing.
records(dict): the dict contained the image and coords
Returns:
records (dict): contain the image and coords after tranformed
"""
def __init__(self, trainsize, use_udp=False):
self.trainsize = trainsize
self.use_udp = use_udp
def __call__(self, image, im_info):
rot = 0
imshape = im_info['im_shape'][::-1]
center = im_info['center'] if 'center' in im_info else imshape / 2.
scale = im_info['scale'] if 'scale' in im_info else imshape
if self.use_udp:
trans = get_warp_matrix(
rot, center * 2.0,
[self.trainsize[0] - 1.0, self.trainsize[1] - 1.0], scale)
image = cv2.warpAffine(
image,
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
flags=cv2.INTER_LINEAR)
else:
trans = get_affine_transform(center, scale, rot, self.trainsize)
image = cv2.warpAffine(
image,
trans, (int(self.trainsize[0]), int(self.trainsize[1])),
flags=cv2.INTER_LINEAR)
return image, im_info
class Compose:
def __init__(self, transforms):
self.transforms = []
for op_info in transforms:
new_op_info = op_info.copy()
op_type = new_op_info.pop('type')
self.transforms.append(eval(op_type)(**new_op_info))
def __call__(self, img_path):
img, im_info = decode_image(img_path)
for t in self.transforms:
img, im_info = t(img, im_info)
inputs = copy.deepcopy(im_info)
inputs['image'] = img
return inputs