-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLSTM_pred.py
273 lines (244 loc) · 10.7 KB
/
LSTM_pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# essentially a copy of LSTM from different repository on my profile, but modified slightly to be used with algo trader
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import time
import os
import random
from collections import deque
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout, Bidirectional
from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import r2_score
import yfinance as yf
### Stock price predictor
### To visualize training process w/ TensorBoard run cmd in terminal window: tensorboard --logdir logs/fit
# Reproducability
np.random.seed(42)
tf.random.set_seed(42)
random.seed(42)
### Set parameters
N_STEPS = 100
# valid periods: 1d,5d,1mo,3mo,6mo,1y,2y,5y,10y,ytd,max
PERIOD = '1d'
# valid intervals: 1m,2m,5m,15m,30m,60m,90m,1h,1d,5d,1wk,1mo,3mo
INTERVAL = '1m'
# Lookup step, 1 is the next day
LOOKUP_STEP = 1
# test ratio size, 0.2 is 20%
TEST_SIZE = 0.3
# features to use
FEATURE_COLUMNS = ["Close", "Volume", "Open", "High", "Low"]
# date now
date_now = time.strftime("%Y-%m-%d")
# > model parameters <
N_LAYERS = 5
#Type of model
CELL = LSTM
# Number of neurons
UNITS = 256
# Dropout rate
DROPOUT = 0.3
# whether to use bidirectional RNNs
BIDIRECTIONAL = False
# > training parameters <
# LOSS = "mae"
# huber loss
LOSS = "huber_loss"
OPTIMIZER = "adam"
BATCH_SIZE = 64
EPOCHS = 40
ticker = "AAPL"
#units = neurons
def load_data(ticker, period, interval, n_steps=200, scale=True, shuffle=True, lookup_step=30, test_size=.2,
feature_columns=['Close', 'Volume', 'Open', 'High', 'Low']):
'''
:param ticker: Ticker you want to load, dtype: str
:param period: Time period you want data from, dtype: str(options in program)
:param interval: Interval for data, dtype:str
:param n_steps: Past sequence length used to predict, default = 50, dtype: int
:param scale: Whether to scale data b/w 0 and 1, default = True, dtype: Bool
:param shuffle: Whether to shuffle data, default = True, dtyper: Bool
:param lookup_step: Future lookup step to predict, default = 1(next day), dtype:int
:param test_size: ratio for test data, default is .2 (20% test data), dtype: float
:param feature_columns: list of features fed into the model, default is OHLCV, dtype: list
:return:
'''
df = yf.download(tickers=ticker, period=period, interval=interval,
group_by='ticker',
# adjust all OHLC automatically
auto_adjust=True, prepost=True, threads=True, proxy=None)
result = {}
result['df'] = df.copy()
### preview data frame before preprocessing
print(df)
for col in feature_columns:
assert col in df.columns, f"'{col}' does not exist in the dataframe."
if scale:
column_scaler = {}
# scale the data (prices) from 0 to 1
for column in feature_columns:
scaler = preprocessing.MinMaxScaler()
df[column] = scaler.fit_transform(np.expand_dims(df[column].values, axis=1))
column_scaler[column] = scaler
# add the MinMaxScaler instances to the result returned
result["column_scaler"] = column_scaler
# add the target column (label) by shifting by `lookup_step`
df['future'] = df['Close'].shift(-lookup_step)
# last `lookup_step` columns contains NaN in future column
# get them before droping NaNs
last_sequence = np.array(df[feature_columns].tail(lookup_step))
# drop NaNs
df.dropna(inplace=True)
sequence_data = []
sequences = deque(maxlen=n_steps)
for entry, target in zip(df[feature_columns].values, df['future'].values):
sequences.append(entry)
if len(sequences) == n_steps:
sequence_data.append([np.array(sequences), target])
# get the last sequence by appending the last `n_step` sequence with `lookup_step` sequence
# for instance, if n_steps=50 and lookup_step=10, last_sequence should be of 60 (that is 50+10) length
# this last_sequence will be used to predict future stock prices not available in the dataset
last_sequence = list(sequences) + list(last_sequence)
last_sequence = np.array(last_sequence)
# add to result
result['last_sequence'] = last_sequence
# construct the X's and y's
X, y = [], []
for seq, target in sequence_data:
X.append(seq)
y.append(target)
# convert to numpy arrays
X = np.array(X)
y = np.array(y)
# reshape X to fit the neural network
X = X.reshape((X.shape[0], X.shape[2], X.shape[1]))
# split the dataset
result["X_train"], result["X_test"], result["y_train"], result["y_test"] = train_test_split(X, y,
test_size=test_size, shuffle=shuffle)
# return the result
return result
def create_model(sequence_length, units=256, cell=LSTM, n_layers=3, dropout=0.3,
loss="mean_absolute_error", optimizer="adam", bidirectional=False):
model = Sequential()
for i in range(n_layers):
if i == 0:
# first layer
if bidirectional:
model.add(Bidirectional(cell(units, return_sequences=True), input_shape=(None, sequence_length)))
else:
model.add(cell(units, return_sequences=True, input_shape=(None, sequence_length)))
elif i == n_layers - 1:
# last layer
if bidirectional:
model.add(Bidirectional(cell(units, return_sequences=False)))
else:
model.add(cell(units, return_sequences=False))
else:
# hidden layers
if bidirectional:
model.add(Bidirectional(cell(units, return_sequences=True)))
else:
model.add(cell(units, return_sequences=True))
# add dropout after each layer
model.add(Dropout(dropout))
model.add(Dense(1, activation="linear"))
model.compile(loss=loss, metrics=["mean_absolute_error"], optimizer=optimizer)
return model
#save model
model_name = f"{date_now}_{ticker}-{LOSS}-{OPTIMIZER}-{CELL.__name__}-seq-{N_STEPS}-step-{LOOKUP_STEP}-layers-{N_LAYERS}-units-{UNITS}"
if BIDIRECTIONAL:
model_name += "-b"
# folders that store results
if not os.path.isdir("results"):
os.mkdir("results")
if not os.path.isdir("logs"):
os.mkdir("logs")
if not os.path.isdir("data"):
os.mkdir("data")
data = load_data(ticker, PERIOD, INTERVAL, N_STEPS, lookup_step=LOOKUP_STEP, test_size=TEST_SIZE, feature_columns=FEATURE_COLUMNS)
# save the dataframe
data["df"].to_csv()
# construct the model
model = create_model(N_STEPS, loss=LOSS, units=UNITS, cell=CELL, n_layers=N_LAYERS,
dropout=DROPOUT, optimizer=OPTIMIZER, bidirectional=BIDIRECTIONAL)
# some tensorflow callbacks
checkpointer = ModelCheckpoint(os.path.join("results", model_name + ".h5"), save_weights_only=True, save_best_only=True, verbose=1)
tensorboard = TensorBoard(log_dir=os.path.join("logs", model_name))
history = model.fit(data["X_train"], data["y_train"],
batch_size=BATCH_SIZE,
epochs=EPOCHS,
validation_data=(data["X_test"], data["y_test"]),
callbacks=[checkpointer, tensorboard],
verbose=1)
model.save(os.path.join("results", model_name) + ".h5")
# >> Testing the Model <<
data = load_data(ticker, PERIOD, INTERVAL, N_STEPS, lookup_step=LOOKUP_STEP, test_size=TEST_SIZE,
feature_columns=FEATURE_COLUMNS, shuffle=False)
# construct the model
model = create_model(N_STEPS, loss=LOSS, units=UNITS, cell=CELL, n_layers=N_LAYERS,
dropout=DROPOUT, optimizer=OPTIMIZER, bidirectional=BIDIRECTIONAL)
model_path = os.path.join("results", model_name) + ".h5"
model.load_weights(model_path)
# evaluate the model
mse, mae = model.evaluate(data["X_test"], data["y_test"], verbose=0)
# calculate the mean absolute error (inverse scaling)
mean_absolute_error = data["column_scaler"]["Close"].inverse_transform([[mae]])[0][0]
print("Mean Absolute Error:", mean_absolute_error)
def predict(model, data):
last_sequence = data["last_sequence"][-N_STEPS:]
column_scaler = data["column_scaler"]
last_sequence = last_sequence.reshape((last_sequence.shape[1], last_sequence.shape[0]))
last_sequence = np.expand_dims(last_sequence, axis=0)
# get the prediction (scaled from 0 to 1)
prediction = model.predict(last_sequence)
# get the price (by inverting the scaling)
predicted_price = column_scaler["Close"].inverse_transform(prediction)[0][0]
return predicted_price
tickerData = yf.Ticker(f'{ticker}')
tickerDf = tickerData.history(period='7d')
tickerDf
# predict the future price
future_price = predict(model, data)
print(f"Recent {ticker} QQQ pricing:")
print(f"{tickerDf}")
print(f"Future price after {LOOKUP_STEP} days is {future_price:.2f}$")
def plot_graph(model, data):
y_test = data["y_test"]
X_test = data["X_test"]
y_pred = model.predict(X_test)
y_test = np.squeeze(data["column_scaler"]["Close"].inverse_transform(np.expand_dims(y_test, axis=0)))
y_pred = np.squeeze(data["column_scaler"]["Close"].inverse_transform(y_pred))
# currently last 200 days
plt.plot(y_test[-100:], c='b')
plt.plot(y_pred[-100:], c='r')
plt.xlabel("Days")
plt.ylabel("Price")
### added plot title
plt.title(f'{ticker}')
plt.legend(["Actual Price", "Predicted Price"])
plt.show()
plot_graph(model, data)
### inverse transformation back to price from normalized values and then converted to boolean and calculated
def accuracy(model, data):
y_test = data["y_test"]
X_test = data["X_test"]
y_pred = model.predict(X_test)
y_test = np.squeeze(data["column_scaler"]["Close"].inverse_transform(np.expand_dims(y_test, axis=0)))
y_pred = np.squeeze(data["column_scaler"]["Close"].inverse_transform(y_pred))
y_pred = list(map(lambda current, future: int(float(future) > float(current)), y_test[:-LOOKUP_STEP], y_pred[LOOKUP_STEP:]))
y_test = list(map(lambda current, future: int(float(future) > float(current)), y_test[:-LOOKUP_STEP], y_test[LOOKUP_STEP:]))
return accuracy_score(y_test, y_pred)
def accuracy2(model, data):
y_test = data["y_test"]
X_test = data["X_test"]
y_pred = model.predict(X_test)
y_test = np.squeeze(data["column_scaler"]["Close"].inverse_transform(np.expand_dims(y_test, axis=0)))
y_pred = np.squeeze(data["column_scaler"]["Close"].inverse_transform(y_pred))
return r2_score(y_test, y_pred)
print(str(LOOKUP_STEP) + ":", "Accuracy Score:", accuracy(model, data))
print(str(LOOKUP_STEP) + ":", "R2:", accuracy2(model, data))