-
Notifications
You must be signed in to change notification settings - Fork 77
/
test.py
182 lines (148 loc) · 7.75 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from utils import pp, visualize, to_json, show_all_variables
from models import ALOCC_Model
import matplotlib.pyplot as plt
from kh_tools import *
import numpy as np
import scipy.misc
from utils import *
import time
import os
flags = tf.app.flags
flags.DEFINE_integer("epoch", 1, "Epoch to train [25]")
flags.DEFINE_float("learning_rate", 0, "Learning rate of for adam [0.0002]")
flags.DEFINE_float("beta1", 0.5, "Momentum term of adam [0.5]")
flags.DEFINE_integer("attention_label", 1, "Conditioned label that growth attention of training label [1]")
flags.DEFINE_float("r_alpha", 0.2, "Refinement parameter [0.2]")
flags.DEFINE_integer("train_size", np.inf, "The size of train images [np.inf]")
flags.DEFINE_integer("batch_size", 128, "The size of batch images [64]")
flags.DEFINE_integer("input_height", 45, "The size of image to use. [45]")
flags.DEFINE_integer("input_width", None, "The size of image to use. If None, same value as input_height [None]")
flags.DEFINE_integer("output_height", 45, "The size of the output images to produce [45]")
flags.DEFINE_integer("output_width", None, "The size of the output images to produce. If None, same value as output_height [None]")
flags.DEFINE_string("dataset", "UCSD", "The name of dataset [UCSD, mnist]")
flags.DEFINE_string("dataset_address", "./dataset/UCSD_Anomaly_Dataset.v1p2/UCSDped2/Test", "The path of dataset")
flags.DEFINE_string("input_fname_pattern", "*", "Glob pattern of filename of input images [*]")
flags.DEFINE_string("checkpoint_dir", "./checkpoint/UCSD_128_45_45/", "Directory name to save the checkpoints [checkpoint]")
flags.DEFINE_string("log_dir", "log", "Directory name to save the log [log]")
flags.DEFINE_string("sample_dir", "samples", "Directory name to save the image samples [samples]")
flags.DEFINE_boolean("train", False, "True for training, False for testing [False]")
FLAGS = flags.FLAGS
def check_some_assertions():
"""
to check some assertions in inputs and also check sth else.
"""
if FLAGS.input_width is None:
FLAGS.input_width = FLAGS.input_height
if FLAGS.output_width is None:
FLAGS.output_width = FLAGS.output_height
if not os.path.exists(FLAGS.checkpoint_dir):
os.makedirs(FLAGS.checkpoint_dir)
if not os.path.exists(FLAGS.sample_dir):
os.makedirs(FLAGS.sample_dir)
def main(_):
print('Program is started at', time.clock())
pp.pprint(flags.FLAGS.__flags)
n_per_itr_print_results = 100
n_fetch_data = 10
kb_work_on_patch= False
nd_input_frame_size = (240, 360)
#nd_patch_size = (45, 45)
n_stride = 10
#FLAGS.checkpoint_dir = "./checkpoint/UCSD_128_45_45/"
#FLAGS.dataset = 'UCSD'
#FLAGS.dataset_address = './dataset/UCSD_Anomaly_Dataset.v1p2/UCSDped2/Test'
lst_test_dirs = ['Test004','Test005','Test006']
#DATASET PARAMETER : MNIST
#FLAGS.dataset = 'mnist'
#FLAGS.dataset_address = './dataset/mnist'
#nd_input_frame_size = (28, 28)
#nd_patch_size = (28, 28)
#FLAGS.checkpoint_dir = "./checkpoint/mnist_128_28_28/"
#FLAGS.input_width = nd_patch_size[0]
#FLAGS.input_height = nd_patch_size[1]
#FLAGS.output_width = nd_patch_size[0]
#FLAGS.output_height = nd_patch_size[1]
check_some_assertions()
nd_patch_size = (FLAGS.input_width, FLAGS.input_height)
nd_patch_step = (n_stride, n_stride)
FLAGS.nStride = n_stride
#FLAGS.input_fname_pattern = '*'
FLAGS.train = False
FLAGS.epoch = 1
FLAGS.batch_size = 504
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.1)
run_config = tf.ConfigProto(gpu_options=gpu_options)
run_config.gpu_options.allow_growth=True
with tf.Session(config=run_config) as sess:
tmp_ALOCC_model = ALOCC_Model(
sess,
input_width=FLAGS.input_width,
input_height=FLAGS.input_height,
output_width=FLAGS.output_width,
output_height=FLAGS.output_height,
batch_size=FLAGS.batch_size,
sample_num=FLAGS.batch_size,
attention_label=FLAGS.attention_label,
r_alpha=FLAGS.r_alpha,
is_training=FLAGS.train,
dataset_name=FLAGS.dataset,
dataset_address=FLAGS.dataset_address,
input_fname_pattern=FLAGS.input_fname_pattern,
checkpoint_dir=FLAGS.checkpoint_dir,
sample_dir=FLAGS.sample_dir,
nd_patch_size=nd_patch_size,
n_stride=n_stride,
n_per_itr_print_results=n_per_itr_print_results,
kb_work_on_patch=kb_work_on_patch,
nd_input_frame_size = nd_input_frame_size,
n_fetch_data=n_fetch_data)
show_all_variables()
print('--------------------------------------------------')
print('Load Pretrained Model...')
tmp_ALOCC_model.f_check_checkpoint()
if FLAGS.dataset=='mnist':
mnist = input_data.read_data_sets(FLAGS.dataset_address)
specific_idx_anomaly = np.where(mnist.train.labels != 6)[0]
specific_idx = np.where(mnist.train.labels == 6)[0]
ten_precent_anomaly = [specific_idx_anomaly[x] for x in
random.sample(range(0, len(specific_idx_anomaly)), len(specific_idx) // 40)]
data = mnist.train.images[specific_idx].reshape(-1, 28, 28, 1)
tmp_data = mnist.train.images[ten_precent_anomaly].reshape(-1, 28, 28, 1)
data = np.append(data, tmp_data).reshape(-1, 28, 28, 1)
lst_prob = tmp_ALOCC_model.f_test_frozen_model(data[0:FLAGS.batch_size])
print('check is ok')
exit()
#generated_data = tmp_ALOCC_model.feed2generator(data[0:FLAGS.batch_size])
# else in UCDS (depends on infrustructure)
for s_image_dirs in sorted(glob(os.path.join(FLAGS.dataset_address, 'Test[0-9][0-9][0-9]'))):
tmp_lst_image_paths = []
if os.path.basename(s_image_dirs) not in ['Test004']:
print('Skip ',os.path.basename(s_image_dirs))
continue
for s_image_dir_files in sorted(glob(os.path.join(s_image_dirs + '/*'))):
if os.path.basename(s_image_dir_files) not in ['068.tif']:
print('Skip ', os.path.basename(s_image_dir_files))
continue
tmp_lst_image_paths.append(s_image_dir_files)
#random
#lst_image_paths = [tmp_lst_image_paths[x] for x in random.sample(range(0, len(tmp_lst_image_paths)), n_fetch_data)]
lst_image_paths = tmp_lst_image_paths
#images =read_lst_images(lst_image_paths,nd_patch_size,nd_patch_step,b_work_on_patch=False)
images = read_lst_images_w_noise2(lst_image_paths, nd_patch_size, nd_patch_step)
lst_prob = process_frame(os.path.basename(s_image_dirs),images,tmp_ALOCC_model)
print('pseudocode test is finished')
# This code for just check output for readers
# ...
def process_frame(s_name,frames_src,sess):
nd_patch,nd_location = get_image_patches(frames_src,sess.patch_size,sess.patch_step)
frame_patches = nd_patch.transpose([1,0,2,3])
print('frame patches :{}\npatches size:{}'.format(len(frame_patches),(frame_patches.shape[1],frame_patches.shape[2])))
lst_prob = sess.f_test_frozen_model(frame_patches)
# This code for just check output for readers
# ...
# ---------------------------------------------------------------------------------------
# ---------------------------------------------------------------------------------------
if __name__ == '__main__':
tf.app.run()