From c9a1a757d1a09190eee78767b3d36b2a84066e42 Mon Sep 17 00:00:00 2001 From: Justin Traglia Date: Tue, 16 Jul 2024 13:39:26 -0500 Subject: [PATCH] Replace a couple uses of "monomial" with "coefficient" --- .../polynomial-commitments-sampling.md | 53 ++++++++++--------- 1 file changed, 28 insertions(+), 25 deletions(-) diff --git a/specs/_features/eip7594/polynomial-commitments-sampling.md b/specs/_features/eip7594/polynomial-commitments-sampling.md index 5675d91510..89047a601b 100644 --- a/specs/_features/eip7594/polynomial-commitments-sampling.md +++ b/specs/_features/eip7594/polynomial-commitments-sampling.md @@ -39,7 +39,6 @@ - [`coset_for_cell`](#coset_for_cell) - [Cells](#cells-1) - [Cell computation](#cell-computation) - - [`compute_cells_and_kzg_proofs_polynomialcoeff`](#compute_cells_and_kzg_proofs_polynomialcoeff) - [`compute_cells_and_kzg_proofs`](#compute_cells_and_kzg_proofs) - [Cell verification](#cell-verification) - [`verify_cell_kzg_proof_batch`](#verify_cell_kzg_proof_batch) @@ -256,14 +255,25 @@ def compute_verify_cell_kzg_proof_batch_challenge(commitments: Sequence[KZGCommi ```python def polynomial_eval_to_coeff(polynomial: Polynomial) -> PolynomialCoeff: """ - Interpolates a polynomial (given in evaluation form) to a polynomial in coefficient form. + Interpolates a polynomial evaluation form to a polynomial in coefficient form. """ roots_of_unity = compute_roots_of_unity(FIELD_ELEMENTS_PER_BLOB) polynomial_coeff = fft_field(bit_reversal_permutation(list(polynomial)), roots_of_unity, inv=True) - return polynomial_coeff ``` +#### `polynomial_coeff_to_eval` + +```python +def polynomial_coeff_to_eval(polynomial_coeff: PolynomialCoeff) -> Polynomial: + """ + Interpolates a polynomial in coefficient form to a polynomial in evaluation form. + """ + roots_of_unity = compute_roots_of_unity(FIELD_ELEMENTS_PER_BLOB) + polynomial = bit_reversal_permutation(fft_field(list(polynomial_coeff)), roots_of_unity) + return polynomial +``` + #### `add_polynomialcoeff` ```python @@ -556,24 +566,6 @@ def coset_for_cell(cell_index: CellIndex) -> Coset: ### Cell computation -#### `compute_cells_and_kzg_proofs_polynomialcoeff` - -```python -def compute_cells_and_kzg_proofs_polynomialcoeff(polynomial_coeff: PolynomialCoeff) -> Tuple[ - Vector[Cell, CELLS_PER_EXT_BLOB], - Vector[KZGProof, CELLS_PER_EXT_BLOB]]: - """ - Helper function which computes cells/proofs for a polynomial in coefficient form. - """ - cells, proofs = [], [] - for i in range(CELLS_PER_EXT_BLOB): - coset = coset_for_cell(CellIndex(i)) - proof, ys = compute_kzg_proof_multi_impl(polynomial_coeff, coset) - cells.append(coset_evals_to_cell(ys)) - proofs.append(proof) - return cells, proofs -``` - #### `compute_cells_and_kzg_proofs` ```python @@ -591,7 +583,15 @@ def compute_cells_and_kzg_proofs(blob: Blob) -> Tuple[ polynomial = blob_to_polynomial(blob) polynomial_coeff = polynomial_eval_to_coeff(polynomial) - return compute_cells_and_kzg_proofs_polynomialcoeff(polynomial_coeff) + + cells, proofs = [], [] + for i in range(CELLS_PER_EXT_BLOB): + coset = coset_for_cell(CellIndex(i)) + proof, ys = compute_kzg_proof_multi_impl(polynomial_coeff, coset) + cells.append(coset_evals_to_cell(ys)) + proofs.append(proof) + + return cells, proofs ``` ### Cell verification @@ -683,7 +683,7 @@ def construct_vanishing_polynomial(missing_cell_indices: Sequence[CellIndex]) -> def recover_polynomialcoeff(cell_indices: Sequence[CellIndex], cells: Sequence[Cell]) -> Sequence[BLSFieldElement]: """ - Recover the polynomial in monomial form that when evaluated at the roots of unity will give the extended blob. + Recover the polynomial in coefficient form that when evaluated at the roots of unity will give the extended blob. """ # Get the extended domain. This will be referred to as the FFT domain roots_of_unity_extended = compute_roots_of_unity(FIELD_ELEMENTS_PER_EXT_BLOB) @@ -710,7 +710,7 @@ def recover_polynomialcoeff(cell_indices: Sequence[CellIndex], extended_evaluation_times_zero = [BLSFieldElement(int(a) * int(b) % BLS_MODULUS) for a, b in zip(zero_poly_eval, extended_evaluation)] - # Convert (E*Z)(x) to monomial form + # Convert (E*Z)(x) to coefficient form extended_evaluation_times_zero_coeffs = fft_field(extended_evaluation_times_zero, roots_of_unity_extended, inv=True) # Convert (E*Z)(x) to evaluation form over a coset of the FFT domain @@ -765,6 +765,9 @@ def recover_cells_and_kzg_proofs(cell_indices: Sequence[CellIndex], # Given the coset evaluations, recover the polynomial in coefficient form polynomial_coeff = recover_polynomialcoeff(cell_indices, cosets_evals) + # Convert the polynomial to a blob + polynomial = polynomial_coeff_to_eval(polynomial_coeff) + # Recompute all cells/proofs - return compute_cells_and_kzg_proofs_polynomialcoeff(polynomial_coeff) + return compute_cells_and_kzg_proofs(blob) ```