-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathvocal_track_separation.py
673 lines (523 loc) · 23.1 KB
/
vocal_track_separation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
"""
Title: Vocal Track Separation with Encoder-Decoder Architecture
Author: [Joaquin Jimenez](https://github.com/johacks/)
Date created: 2024/12/10
Last modified: 2024/12/10
Description: Train a model to separate vocal tracks from music mixtures.
Accelerator: GPU
"""
"""
## Introduction
In this tutorial, we build a vocal track separation model using an encoder-decoder
architecture in Keras 3.
We train the model on the [MUSDB18 dataset](https://doi.org/10.5281/zenodo.1117372),
which provides music mixtures and isolated tracks for drums, bass, other, and vocals.
Key concepts covered:
- Audio data preprocessing using the Short-Time Fourier Transform (STFT).
- Audio data augmentation techniques.
- Implementing custom encoders and decoders specialized for audio data.
- Defining appropriate loss functions and metrics for audio source separation tasks.
The model architecture is derived from the TFC_TDF_Net model described in:
W. Choi, M. Kim, J. Chung, D. Lee, and S. Jung, “Investigating U-Nets with various
intermediate blocks for spectrogram-based singing voice separation,” in the 21st
International Society for Music Information Retrieval Conference, 2020.
For reference code, see:
[GitHub: ws-choi/ISMIR2020_U_Nets_SVS](https://github.com/ws-choi/ISMIR2020_U_Nets_SVS).
The data processing and model training routines are partly derived from:
[ZFTurbo/Music-Source-Separation-Training](https://github.com/ZFTurbo/Music-Source-Separation-Training/tree/main).
"""
"""
## Setup
Import and install all the required dependencies.
"""
"""shell
pip install -qq audiomentations soundfile ffmpeg-binaries
pip install -qq "keras==3.7.0"
sudo -n apt-get install -y graphviz >/dev/null 2>&1 # Required for plotting the model
"""
import glob
import os
os.environ["KERAS_BACKEND"] = "jax" # or "tensorflow" or "torch"
import random
import subprocess
import tempfile
import typing
from os import path
import audiomentations as aug
import ffmpeg
import keras
import numpy as np
import soundfile as sf
from IPython import display
from keras import callbacks, layers, ops, saving
from matplotlib import pyplot as plt
"""
## Configuration
The following constants define configuration parameters for audio processing
and model training, including dataset paths, audio chunk sizes, Short-Time Fourier
Transform (STFT) parameters, and training hyperparameters.
"""
# MUSDB18 dataset configuration
MUSDB_STREAMS = {"mixture": 0, "drums": 1, "bass": 2, "other": 3, "vocals": 4}
TARGET_INSTRUMENTS = {track: MUSDB_STREAMS[track] for track in ("vocals",)}
N_INSTRUMENTS = len(TARGET_INSTRUMENTS)
SOURCE_INSTRUMENTS = tuple(k for k in MUSDB_STREAMS if k != "mixture")
# Audio preprocessing parameters for Short-Time Fourier Transform (STFT)
N_SUBBANDS = 4 # Number of subbands into which frequencies are split
CHUNK_SIZE = 65024 # Number of amplitude samples per audio chunk (~4 seconds)
STFT_N_FFT = 2048 # FFT points used in STFT
STFT_HOP_LENGTH = 512 # Hop length for STFT
# Training hyperparameters
N_CHANNELS = 64 # Base channel count for the model
BATCH_SIZE = 3
ACCUMULATION_STEPS = 2
EFFECTIVE_BATCH_SIZE = BATCH_SIZE * (ACCUMULATION_STEPS or 1)
# Paths
TMP_DIR = path.expanduser("~/.keras/tmp")
DATASET_DIR = path.expanduser("~/.keras/datasets")
MODEL_PATH = path.join(TMP_DIR, f"model_{keras.backend.backend()}.keras")
CSV_LOG_PATH = path.join(TMP_DIR, f"training_{keras.backend.backend()}.csv")
os.makedirs(DATASET_DIR, exist_ok=True)
os.makedirs(TMP_DIR, exist_ok=True)
# Set random seed for reproducibility
keras.utils.set_random_seed(21)
"""
## MUSDB18 Dataset
The MUSDB18 dataset is a standard benchmark for music source separation, containing
150 full-length music tracks along with isolated drums, bass, other, and vocals.
The dataset is stored in .mp4 format, and each .mp4 file includes multiple audio
streams (mixture and individual tracks).
### Download and Conversion
The following utility function downloads MUSDB18 and converts its .mp4 files to
.wav files for each instrument track, resampled to 16 kHz.
"""
def download_musdb18(out_dir=None):
"""Download and extract the MUSDB18 dataset, then convert .mp4 files to .wav files.
MUSDB18 reference:
Rafii, Z., Liutkus, A., Stöter, F.-R., Mimilakis, S. I., & Bittner, R. (2017).
MUSDB18 - a corpus for music separation (1.0.0) [Data set]. Zenodo.
"""
ffmpeg.init()
from ffmpeg import FFMPEG_PATH
# Create output directories
os.makedirs((base := out_dir or tempfile.mkdtemp()), exist_ok=True)
if path.exists((out_dir := path.join(base, "musdb18_wav"))):
print("MUSDB18 dataset already downloaded")
return out_dir
# Download and extract the dataset
download_dir = keras.utils.get_file(
fname="musdb18",
origin="https://zenodo.org/records/1117372/files/musdb18.zip",
extract=True,
)
# ffmpeg command template: input, stream index, output
ffmpeg_args = str(FFMPEG_PATH) + " -v error -i {} -map 0:{} -vn -ar 16000 {}"
# Convert each mp4 file to multiple .wav files for each track
for split in ("train", "test"):
songs = os.listdir(path.join(download_dir, split))
for i, song in enumerate(songs):
if i % 10 == 0:
print(f"{split.capitalize()}: {i}/{len(songs)} songs processed")
mp4_path_orig = path.join(download_dir, split, song)
mp4_path = path.join(tempfile.mkdtemp(), split, song.replace(" ", "_"))
os.makedirs(path.dirname(mp4_path), exist_ok=True)
os.rename(mp4_path_orig, mp4_path)
wav_dir = path.join(out_dir, split, path.basename(mp4_path).split(".")[0])
os.makedirs(wav_dir, exist_ok=True)
for track in SOURCE_INSTRUMENTS:
out_path = path.join(wav_dir, f"{track}.wav")
stream_index = MUSDB_STREAMS[track]
args = ffmpeg_args.format(mp4_path, stream_index, out_path).split()
assert subprocess.run(args).returncode == 0, "ffmpeg conversion failed"
return out_dir
# Download and prepare the MUSDB18 dataset
songs = download_musdb18(out_dir=DATASET_DIR)
"""
### Custom Dataset
We define a custom dataset class to generate random audio chunks and their corresponding
labels. The dataset does the following:
1. Selects a random chunk from a random song and instrument.
2. Applies optional data augmentations.
3. Combines isolated tracks to form new synthetic mixtures.
4. Prepares features (mixtures) and labels (vocals) for training.
This approach allows creating an effectively infinite variety of training examples
through randomization and augmentation.
"""
class Dataset(keras.utils.PyDataset):
def __init__(
self,
songs,
batch_size=BATCH_SIZE,
chunk_size=CHUNK_SIZE,
batches_per_epoch=1000 * ACCUMULATION_STEPS,
augmentation=True,
**kwargs,
):
super().__init__(**kwargs)
self.augmentation = augmentation
self.vocals_augmentations = [
aug.PitchShift(min_semitones=-5, max_semitones=5, p=0.1),
aug.SevenBandParametricEQ(-9, 9, p=0.25),
aug.TanhDistortion(0.1, 0.7, p=0.1),
]
self.other_augmentations = [
aug.PitchShift(p=0.1),
aug.AddGaussianNoise(p=0.1),
]
self.songs = songs
self.sizes = {song: self.get_track_set_size(song) for song in self.songs}
self.batch_size = batch_size
self.chunk_size = chunk_size
self.batches_per_epoch = batches_per_epoch
def get_track_set_size(self, song: str):
"""Return the smallest track length in the given song directory."""
sizes = [len(sf.read(p)[0]) for p in glob.glob(path.join(song, "*.wav"))]
if max(sizes) != min(sizes):
print(f"Warning: {song} has different track lengths")
return min(sizes)
def random_chunk_of_instrument_type(self, instrument: str):
"""Extract a random chunk for the specified instrument from a random song."""
song, size = random.choice(list(self.sizes.items()))
track = path.join(song, f"{instrument}.wav")
if self.chunk_size <= size:
start = np.random.randint(size - self.chunk_size + 1)
audio = sf.read(track, self.chunk_size, start, dtype="float32")[0]
audio_mono = np.mean(audio, axis=1)
else:
# If the track is shorter than chunk_size, pad the signal
audio_mono = np.mean(sf.read(track, dtype="float32")[0], axis=1)
audio_mono = np.pad(audio_mono, ((0, self.chunk_size - size),))
# If the chunk is almost silent, retry
if np.mean(np.abs(audio_mono)) < 0.01:
return self.random_chunk_of_instrument_type(instrument)
return self.data_augmentation(audio_mono, instrument)
def data_augmentation(self, audio: np.ndarray, instrument: str):
"""Apply data augmentation to the audio chunk, if enabled."""
def coin_flip(x, probability: float, fn: typing.Callable):
return fn(x) if random.uniform(0, 1) < probability else x
if self.augmentation:
augmentations = (
self.vocals_augmentations
if instrument == "vocals"
else self.other_augmentations
)
# Loudness augmentation
audio *= np.random.uniform(0.5, 1.5, (len(audio),)).astype("float32")
# Random reverse
audio = coin_flip(audio, 0.1, lambda x: np.flip(x))
# Random polarity inversion
audio = coin_flip(audio, 0.5, lambda x: -x)
# Apply selected augmentations
for aug_ in augmentations:
aug_.randomize_parameters(audio, sample_rate=16000)
audio = aug_(audio, sample_rate=16000)
return audio
def random_mix_of_tracks(self) -> dict:
"""Create a random mix of instruments by summing their individual chunks."""
tracks = {}
for instrument in SOURCE_INSTRUMENTS:
# Start with a single random chunk
mixup = [self.random_chunk_of_instrument_type(instrument)]
# Randomly add more chunks of the same instrument (mixup augmentation)
if self.augmentation:
for p in (0.2, 0.02):
if random.uniform(0, 1) < p:
mixup.append(self.random_chunk_of_instrument_type(instrument))
tracks[instrument] = np.mean(mixup, axis=0, dtype="float32")
return tracks
def __len__(self):
return self.batches_per_epoch
def __getitem__(self, idx):
# Generate a batch of random mixtures
batch = [self.random_mix_of_tracks() for _ in range(self.batch_size)]
# Features: sum of all tracks
batch_x = ops.sum(
np.array([list(track_set.values()) for track_set in batch]), axis=1
)
# Labels: isolated target instruments (e.g., vocals)
batch_y = np.array(
[[track_set[t] for t in TARGET_INSTRUMENTS] for track_set in batch]
)
return batch_x, ops.convert_to_tensor(batch_y)
# Create train and validation datasets
train_ds = Dataset(glob.glob(path.join(songs, "train", "*")))
val_ds = Dataset(
glob.glob(path.join(songs, "test", "*")),
batches_per_epoch=int(0.1 * train_ds.batches_per_epoch),
augmentation=False,
)
"""
### Visualize a Sample
Let's visualize a random mixed audio chunk and its corresponding isolated vocals.
This helps to understand the nature of the preprocessed input data.
"""
def visualize_audio_np(audio: np.ndarray, rate=16000, name="mixup"):
"""Plot and display an audio waveform and also produce an Audio widget."""
plt.figure(figsize=(10, 6))
plt.plot(audio)
plt.title(f"Waveform: {name}")
plt.xlim(0, len(audio))
plt.ylabel("Amplitude")
plt.show()
# plt.savefig(f"tmp/{name}.png")
# Normalize and display audio
audio_norm = (audio - np.min(audio)) / (np.max(audio) - np.min(audio) + 1e-8)
audio_norm = (audio_norm * 2 - 1) * 0.6
display.display(display.Audio(audio_norm, rate=rate))
# sf.write(f"tmp/{name}.wav", audio_norm, rate)
sample_batch_x, sample_batch_y = val_ds[None] # Random batch
visualize_audio_np(ops.convert_to_numpy(sample_batch_x[0]))
visualize_audio_np(ops.convert_to_numpy(sample_batch_y[0, 0]), name="vocals")
"""
## Model
### Preprocessing
The model operates on STFT representations rather than raw audio. We define a
preprocessing model to compute STFT and a corresponding inverse transform (iSTFT).
"""
def stft(inputs, fft_size=STFT_N_FFT, sequence_stride=STFT_HOP_LENGTH):
"""Compute the STFT for the input audio and return the real and imaginary parts."""
real_x, imag_x = ops.stft(inputs, fft_size, sequence_stride, fft_size)
real_x, imag_x = ops.expand_dims(real_x, -1), ops.expand_dims(imag_x, -1)
x = ops.concatenate((real_x, imag_x), axis=-1)
# Drop last freq sample for convenience
return ops.split(x, [x.shape[2] - 1], axis=2)[0]
def inverse_stft(inputs, fft_size=STFT_N_FFT, sequence_stride=STFT_HOP_LENGTH):
"""Compute the inverse STFT for the given STFT input."""
x = inputs
# Pad back dropped freq sample if using torch backend
if keras.backend.backend() == "torch":
x = ops.pad(x, ((0, 0), (0, 0), (0, 1), (0, 0)))
real_x, imag_x = ops.split(x, 2, axis=-1)
real_x = ops.squeeze(real_x, axis=-1)
imag_x = ops.squeeze(imag_x, axis=-1)
return ops.istft((real_x, imag_x), fft_size, sequence_stride, fft_size)
"""
### Model Architecture
The model uses a custom encoder-decoder architecture with Time-Frequency Convolution
(TFC) and Time-Distributed Fully Connected (TDF) blocks. They are grouped into a
`TimeFrequencyTransformBlock`, i.e. "TFC_TDF" in the original paper by Choi et al.
We then define an encoder-decoder network with multiple scales. Each encoder scale
applies TFC_TDF blocks followed by downsampling, while decoder scales apply TFC_TDF
blocks over the concatenation of upsampled features and associated encoder outputs.
"""
@saving.register_keras_serializable()
class TimeDistributedDenseBlock(layers.Layer):
"""Time-Distributed Fully Connected layer block.
Applies frequency-wise dense transformations across time frames with instance
normalization and GELU activation.
"""
def __init__(self, bottleneck_factor, fft_dim, **kwargs):
super().__init__(**kwargs)
self.fft_dim = fft_dim
self.hidden_dim = fft_dim // bottleneck_factor
def build(self, *_):
self.group_norm_1 = layers.GroupNormalization(groups=-1)
self.group_norm_2 = layers.GroupNormalization(groups=-1)
self.dense_1 = layers.Dense(self.hidden_dim, use_bias=False)
self.dense_2 = layers.Dense(self.fft_dim, use_bias=False)
def call(self, x):
# Apply normalization and dense layers frequency-wise
x = ops.gelu(self.group_norm_1(x))
x = ops.swapaxes(x, -1, -2)
x = self.dense_1(x)
x = ops.gelu(self.group_norm_2(ops.swapaxes(x, -1, -2)))
x = ops.swapaxes(x, -1, -2)
x = self.dense_2(x)
return ops.swapaxes(x, -1, -2)
@saving.register_keras_serializable()
class TimeFrequencyConvolution(layers.Layer):
"""Time-Frequency Convolutional layer.
Applies a 2D convolution over time-frequency representations and applies instance
normalization and GELU activation.
"""
def __init__(self, channels, **kwargs):
super().__init__(**kwargs)
self.channels = channels
def build(self, *_):
self.group_norm = layers.GroupNormalization(groups=-1)
self.conv = layers.Conv2D(self.channels, 3, padding="same", use_bias=False)
def call(self, x):
return self.conv(ops.gelu(self.group_norm(x)))
@saving.register_keras_serializable()
class TimeFrequencyTransformBlock(layers.Layer):
"""Implements TFC_TDF block for encoder-decoder architecture.
Repeatedly apply Time-Frequency Convolution and Time-Distributed Dense blocks as
many times as specified by the `length` parameter.
"""
def __init__(
self, channels, length, fft_dim, bottleneck_factor, in_channels=None, **kwargs
):
super().__init__(**kwargs)
self.channels = channels
self.length = length
self.fft_dim = fft_dim
self.bottleneck_factor = bottleneck_factor
self.in_channels = in_channels or channels
def build(self, *_):
self.blocks = []
# Add blocks in a flat list to avoid nested structures
for i in range(self.length):
in_channels = self.channels if i > 0 else self.in_channels
self.blocks.append(TimeFrequencyConvolution(in_channels))
self.blocks.append(
TimeDistributedDenseBlock(self.bottleneck_factor, self.fft_dim)
)
self.blocks.append(TimeFrequencyConvolution(self.channels))
# Residual connection
self.blocks.append(layers.Conv2D(self.channels, 1, 1, use_bias=False))
def call(self, inputs):
x = inputs
# Each block consists of 4 layers:
# 1. Time-Frequency Convolution
# 2. Time-Distributed Dense
# 3. Time-Frequency Convolution
# 4. Residual connection
for i in range(0, len(self.blocks), 4):
tfc_1 = self.blocks[i](x)
tdf = self.blocks[i + 1](x)
tfc_2 = self.blocks[i + 2](tfc_1 + tdf)
x = tfc_2 + self.blocks[i + 3](x) # Residual connection
return x
@saving.register_keras_serializable()
class Downscale(layers.Layer):
"""Downscale time-frequency dimensions using a convolution."""
conv_cls = layers.Conv2D
def __init__(self, channels, scale, **kwargs):
super().__init__(**kwargs)
self.channels = channels
self.scale = scale
def build(self, *_):
self.conv = self.conv_cls(self.channels, self.scale, self.scale, use_bias=False)
self.norm = layers.GroupNormalization(groups=-1)
def call(self, inputs):
return self.norm(ops.gelu(self.conv(inputs)))
@saving.register_keras_serializable()
class Upscale(Downscale):
"""Upscale time-frequency dimensions using a transposed convolution."""
conv_cls = layers.Conv2DTranspose
def build_model(
inputs,
n_instruments=N_INSTRUMENTS,
n_subbands=N_SUBBANDS,
channels=N_CHANNELS,
fft_dim=(STFT_N_FFT // 2) // N_SUBBANDS,
n_scales=4,
scale=(2, 2),
block_size=2,
growth=128,
bottleneck_factor=2,
**kwargs,
):
"""Build the TFC_TDF encoder-decoder model for source separation."""
# Compute STFT
x = stft(inputs)
# Split mixture into subbands as separate channels
mix = ops.reshape(x, (-1, x.shape[1], x.shape[2] // n_subbands, 2 * n_subbands))
first_conv_out = layers.Conv2D(channels, 1, 1, use_bias=False)(mix)
x = first_conv_out
# Encoder path
encoder_outs = []
for _ in range(n_scales):
x = TimeFrequencyTransformBlock(
channels, block_size, fft_dim, bottleneck_factor
)(x)
encoder_outs.append(x)
fft_dim, channels = fft_dim // scale[0], channels + growth
x = Downscale(channels, scale)(x)
# Bottleneck
x = TimeFrequencyTransformBlock(channels, block_size, fft_dim, bottleneck_factor)(x)
# Decoder path
for _ in range(n_scales):
fft_dim, channels = fft_dim * scale[0], channels - growth
x = ops.concatenate([Upscale(channels, scale)(x), encoder_outs.pop()], axis=-1)
x = TimeFrequencyTransformBlock(
channels, block_size, fft_dim, bottleneck_factor, in_channels=x.shape[-1]
)(x)
# Residual connection and final convolutions
x = ops.concatenate([mix, x * first_conv_out], axis=-1)
x = layers.Conv2D(channels, 1, 1, use_bias=False, activation="gelu")(x)
x = layers.Conv2D(n_instruments * n_subbands * 2, 1, 1, use_bias=False)(x)
# Reshape back to instrument-wise STFT
x = ops.reshape(x, (-1, x.shape[1], x.shape[2] * n_subbands, n_instruments, 2))
x = ops.transpose(x, (0, 3, 1, 2, 4))
x = ops.reshape(x, (-1, n_instruments, x.shape[2], x.shape[3] * 2))
return keras.Model(inputs=inputs, outputs=x, **kwargs)
"""
## Loss and Metrics
We define:
- `spectral_loss`: Mean absolute error in STFT domain.
- `sdr`: Signal-to-Distortion Ratio, a common source separation metric.
"""
def prediction_to_wave(x, n_instruments=N_INSTRUMENTS):
"""Convert STFT predictions back to waveform."""
x = ops.reshape(x, (-1, x.shape[2], x.shape[3] // 2, 2))
x = inverse_stft(x)
return ops.reshape(x, (-1, n_instruments, x.shape[1]))
def target_to_stft(y):
"""Convert target waveforms to their STFT representations."""
y = ops.reshape(y, (-1, CHUNK_SIZE))
y_real, y_imag = ops.stft(y, STFT_N_FFT, STFT_HOP_LENGTH, STFT_N_FFT)
y_real, y_imag = y_real[..., :-1], y_imag[..., :-1]
y = ops.stack([y_real, y_imag], axis=-1)
return ops.reshape(y, (-1, N_INSTRUMENTS, y.shape[1], y.shape[2] * 2))
@saving.register_keras_serializable()
def sdr(y_true, y_pred):
"""Signal-to-Distortion Ratio metric."""
y_pred = prediction_to_wave(y_pred)
# Add epsilon for numerical stability
num = ops.sum(ops.square(y_true), axis=-1) + 1e-8
den = ops.sum(ops.square(y_true - y_pred), axis=-1) + 1e-8
return 10 * ops.log10(num / den)
@saving.register_keras_serializable()
def spectral_loss(y_true, y_pred):
"""Mean absolute error in the STFT domain."""
y_true = target_to_stft(y_true)
return ops.mean(ops.absolute(y_true - y_pred))
"""
## Training
### Visualize Model Architecture
"""
# Load or create the model
if path.exists(MODEL_PATH):
model = saving.load_model(MODEL_PATH)
else:
model = build_model(keras.Input(sample_batch_x.shape[1:]), name="tfc_tdf_net")
# Display the model architecture
model.summary()
img = keras.utils.plot_model(model, path.join(TMP_DIR, "model.png"), show_shapes=True)
display.display(img)
"""
### Compile and Train the Model
"""
# Compile the model
optimizer = keras.optimizers.Adam(5e-05, gradient_accumulation_steps=ACCUMULATION_STEPS)
model.compile(optimizer=optimizer, loss=spectral_loss, metrics=[sdr])
# Define callbacks
cbs = [
callbacks.ModelCheckpoint(MODEL_PATH, "val_sdr", save_best_only=True, mode="max"),
callbacks.ReduceLROnPlateau(factor=0.95, patience=2),
callbacks.CSVLogger(CSV_LOG_PATH),
]
if not path.exists(MODEL_PATH):
model.fit(train_ds, validation_data=val_ds, epochs=10, callbacks=cbs, shuffle=False)
else:
# Demonstration of a single epoch of training when model already exists
model.fit(train_ds, validation_data=val_ds, epochs=1, shuffle=False, verbose=2)
"""
## Evaluation
Evaluate the model on the validation dataset and visualize predicted vocals.
"""
model.evaluate(val_ds, verbose=2)
y_pred = model.predict(sample_batch_x, verbose=2)
y_pred = prediction_to_wave(y_pred)
visualize_audio_np(ops.convert_to_numpy(y_pred[0, 0]), name="vocals_pred")
"""
## Conclusion
We built and trained a vocal track separation model using an encoder-decoder
architecture with custom blocks applied to the MUSDB18 dataset. We demonstrated
STFT-based preprocessing, data augmentation, and a source separation metric (SDR).
**Next steps:**
- Train for more epochs and refine hyperparameters.
- Separate multiple instruments simultaneously.
- Enhance the model to handle instruments not present in the mixture.
"""