-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathdataset.py
319 lines (284 loc) · 10.6 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import json
import math
import os
from tqdm import tqdm
import numpy as np
from torch.utils.data import Dataset
from text import text_to_sequence
from utils.tools import pad_1D, pad_2D
class Dataset(Dataset):
def __init__(
self, filename, preprocess_config, model_config, train_config, sort=False, drop_last=False
):
self.dataset_name = preprocess_config["dataset"]
self.preprocessed_path = preprocess_config["path"]["preprocessed_path"]
self.cleaners = preprocess_config["preprocessing"]["text"]["text_cleaners"]
self.max_seq_len = model_config["max_seq_len"]
self.batch_size = train_config["optimizer"]["batch_size"]
self.basename, self.speaker, self.text, self.raw_text, self.aux_data = self.process_meta(
filename
)
with open(os.path.join(self.preprocessed_path, "speakers.json")) as f:
self.speaker_map = json.load(f)
with open(os.path.join(self.preprocessed_path, "emotions.json")) as f:
json_raw = json.load(f)
self.emotion_map = json_raw["emotion_dict"]
self.arousal_map = json_raw["arousal_dict"]
self.valence_map = json_raw["valence_dict"]
self.sort = sort
self.drop_last = drop_last
def __len__(self):
return len(self.text)
def __getitem__(self, idx):
basename = self.basename[idx]
speaker = self.speaker[idx]
speaker_id = self.speaker_map[speaker]
aux_data = self.aux_data[idx].split("|")
emotion = self.emotion_map[aux_data[-3]]
arousal = self.arousal_map[aux_data[-2]]
valence = self.valence_map[aux_data[-1]]
raw_text = self.raw_text[idx]
phone = np.array(text_to_sequence(self.text[idx], self.cleaners))
mel_path = os.path.join(
self.preprocessed_path,
"mel",
"{}-mel-{}.npy".format(speaker, basename),
)
mel = np.load(mel_path)
pitch_path = os.path.join(
self.preprocessed_path,
"pitch",
"{}-pitch-{}.npy".format(speaker, basename),
)
pitch = np.load(pitch_path)
energy_path = os.path.join(
self.preprocessed_path,
"energy",
"{}-energy-{}.npy".format(speaker, basename),
)
energy = np.load(energy_path)
duration_path = os.path.join(
self.preprocessed_path,
"duration",
"{}-duration-{}.npy".format(speaker, basename),
)
duration = np.load(duration_path)
sample = {
"id": basename,
"speaker": speaker_id,
"emotion": emotion,
"arousal": arousal,
"valence": valence,
"text": phone,
"raw_text": raw_text,
"mel": mel,
"pitch": pitch,
"energy": energy,
"duration": duration,
}
return sample
def process_meta(self, filename):
with open(
os.path.join(self.preprocessed_path, filename), "r", encoding="utf-8"
) as f:
name = []
speaker = []
text = []
raw_text = []
aux_data = []
for line in tqdm(f.readlines()):
line_split = line.strip("\n").split("|")
n, s, t, r = line_split[:4]
mel_path = os.path.join(
self.preprocessed_path,
"mel",
"{}-mel-{}.npy".format(s, n),
)
mel = np.load(mel_path)
if mel.shape[0] > self.max_seq_len:
continue
a = "|".join(line_split[4:])
name.append(n)
speaker.append(s)
text.append(t)
raw_text.append(r)
aux_data.append(a)
return name, speaker, text, raw_text, aux_data
def reprocess(self, data, idxs):
ids = [data[idx]["id"] for idx in idxs]
speakers = [data[idx]["speaker"] for idx in idxs]
emotions = [data[idx]["emotion"] for idx in idxs]
arousals = [data[idx]["arousal"] for idx in idxs]
valences = [data[idx]["valence"] for idx in idxs]
texts = [data[idx]["text"] for idx in idxs]
raw_texts = [data[idx]["raw_text"] for idx in idxs]
mels = [data[idx]["mel"] for idx in idxs]
pitches = [data[idx]["pitch"] for idx in idxs]
energies = [data[idx]["energy"] for idx in idxs]
durations = [data[idx]["duration"] for idx in idxs]
text_lens = np.array([text.shape[0] for text in texts])
mel_lens = np.array([mel.shape[0] for mel in mels])
speakers = np.array(speakers)
emotions = np.array(emotions)
arousals = np.array(arousals)
valences = np.array(valences)
texts = pad_1D(texts)
mels = pad_2D(mels)
pitches = pad_1D(pitches)
energies = pad_1D(energies)
durations = pad_1D(durations)
return (
ids,
raw_texts,
speakers,
emotions,
arousals,
valences,
texts,
text_lens,
max(text_lens),
mels,
mel_lens,
max(mel_lens),
pitches,
energies,
durations,
)
def collate_fn(self, data):
data_size = len(data)
if self.sort:
len_arr = np.array([d["text"].shape[0] for d in data])
idx_arr = np.argsort(-len_arr)
else:
idx_arr = np.arange(data_size)
tail = idx_arr[len(idx_arr) - (len(idx_arr) % self.batch_size) :]
idx_arr = idx_arr[: len(idx_arr) - (len(idx_arr) % self.batch_size)]
idx_arr = idx_arr.reshape((-1, self.batch_size)).tolist()
if not self.drop_last and len(tail) > 0:
idx_arr += [tail.tolist()]
output = list()
for idx in idx_arr:
output.append(self.reprocess(data, idx))
return output
class TextDataset(Dataset):
def __init__(self, filepath, preprocess_config, model_config):
self.cleaners = preprocess_config["preprocessing"]["text"]["text_cleaners"]
self.preprocessed_path = preprocess_config["path"]["preprocessed_path"]
self.max_seq_len = model_config["max_seq_len"]
self.basename, self.speaker, self.text, self.raw_text, self.aux_data = self.process_meta(
filepath
)
with open(
os.path.join(
preprocess_config["path"]["preprocessed_path"], "speakers.json"
)
) as f:
self.speaker_map = json.load(f)
with open(os.path.join(self.preprocessed_path, "emotions.json")) as f:
json_raw = json.load(f)
self.emotion_map = json_raw["emotion_dict"]
self.arousal_map = json_raw["arousal_dict"]
self.valence_map = json_raw["valence_dict"]
def __len__(self):
return len(self.text)
def __getitem__(self, idx):
basename = self.basename[idx]
speaker = self.speaker[idx]
speaker_id = self.speaker_map[speaker]
aux_data = self.aux_data[idx].split("|")
emotion = self.emotion_map[aux_data[-3]]
arousal = self.arousal_map[aux_data[-2]]
valence = self.valence_map[aux_data[-1]]
raw_text = self.raw_text[idx]
phone = np.array(text_to_sequence(self.text[idx], self.cleaners))
return (basename, speaker_id, emotion, arousal, valence, phone, raw_text)
def process_meta(self, filename):
with open(filename, "r", encoding="utf-8") as f:
name = []
speaker = []
text = []
raw_text = []
aux_data = []
for line in tqdm(f.readlines()):
line_split = line.strip("\n").split("|")
n, s, t, r = line_split[:4]
mel_path = os.path.join(
self.preprocessed_path,
"mel",
"{}-mel-{}.npy".format(s, n),
)
mel = np.load(mel_path)
if mel.shape[0] > self.max_seq_len:
continue
a = "|".join(line_split[4:])
name.append(n)
speaker.append(s)
text.append(t)
raw_text.append(r)
aux_data.append(a)
return name, speaker, text, raw_text, aux_data
def collate_fn(self, data):
ids = [d[0] for d in data]
speakers = np.array([d[1] for d in data])
emotions = np.array([d[2] for d in data])
arousals = np.array([d[3] for d in data])
valences = np.array([d[4] for d in data])
texts = [d[5] for d in data]
raw_texts = [d[6] for d in data]
text_lens = np.array([text.shape[0] for text in texts])
texts = pad_1D(texts)
return ids, raw_texts, speakers, emotions, arousals, valences, texts, text_lens, max(text_lens)
if __name__ == "__main__":
# Test
import torch
import yaml
from torch.utils.data import DataLoader
from utils.utils import to_device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
preprocess_config = yaml.load(
open("./config/LJSpeech/preprocess.yaml", "r"), Loader=yaml.FullLoader
)
model_config = yaml.load(
open("./config/LJSpeech/model.yaml", "r"), Loader=yaml.FullLoader
)
train_config = yaml.load(
open("./config/LJSpeech/train.yaml", "r"), Loader=yaml.FullLoader
)
train_dataset = Dataset(
"train.txt", preprocess_config, model_config, train_config, sort=True, drop_last=True
)
val_dataset = Dataset(
"val.txt", preprocess_config, model_config, train_config, sort=False, drop_last=False
)
train_loader = DataLoader(
train_dataset,
batch_size=train_config["optimizer"]["batch_size"] * 4,
shuffle=True,
collate_fn=train_dataset.collate_fn,
)
val_loader = DataLoader(
val_dataset,
batch_size=train_config["optimizer"]["batch_size"],
shuffle=False,
collate_fn=val_dataset.collate_fn,
)
n_batch = 0
for batchs in train_loader:
for batch in batchs:
to_device(batch, device)
n_batch += 1
print(
"Training set with size {} is composed of {} batches.".format(
len(train_dataset), n_batch
)
)
n_batch = 0
for batchs in val_loader:
for batch in batchs:
to_device(batch, device)
n_batch += 1
print(
"Validation set with size {} is composed of {} batches.".format(
len(val_dataset), n_batch
)
)