-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathprune.py
191 lines (156 loc) · 6.06 KB
/
prune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# -*- coding: utf-8 -*-
'''Deep Compression with PyTorch.'''
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import os
import argparse
from models import *
from utils import progress_bar
import numpy as np
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Pruning')
parser.add_argument('--loadfile', '-l', default="checkpoint/res18.t7",dest='loadfile')
parser.add_argument('--prune', '-p', default=0.5, dest='prune', help='Parameters to be pruned')
parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
parser.add_argument('--net', default='res18')
args = parser.parse_args()
prune = float(args.prune)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
# Model
print('==> Building model..')
if args.net=='res18':
net = ResNet18()
elif args.net=='vgg':
net = VGG('VGG19')
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
# Load weights from checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isfile(args.loadfile), 'Error: no checkpoint directory found!'
checkpoint = torch.load(args.loadfile)
net.load_state_dict(checkpoint['net'])
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
def prune_weights(torchweights):
weights=np.abs(torchweights.cpu().numpy());
weightshape=weights.shape
rankedweights=weights.reshape(weights.size).argsort()#.reshape(weightshape)
num = weights.size
prune_num = int(np.round(num*prune))
count=0
masks = np.zeros_like(rankedweights)
for n, rankedweight in enumerate(rankedweights):
if rankedweight > prune_num:
masks[n]=1
else: count+=1
print("total weights:", num)
print("weights pruned:",count)
masks=masks.reshape(weightshape)
weights=masks*weights
return torch.from_numpy(weights).cuda(), masks
# prune weights
# The pruned weight location is saved in the addressbook and maskbook.
# These will be used during training to keep the weights zero.
addressbook=[]
maskbook=[]
for k, v in net.state_dict().items():
if "conv2" in k:
addressbook.append(k)
print("pruning layer:",k)
weights=v
weights, masks = prune_weights(weights)
maskbook.append(masks)
checkpoint['net'][k] = weights
checkpoint['address'] = addressbook
checkpoint['mask'] = maskbook
net.load_state_dict(checkpoint['net'])
# Training
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
# mask pruned weights
checkpoint['net']=net.state_dict()
# print("zeroing..")
# print(np.count_nonzero(checkpoint['net'][addressbook[0]].cpu().numpy()))
for address, mask in zip(addressbook, maskbook):
# print(address)
checkpoint['net'][address] = torch.from_numpy(checkpoint['net'][address].cpu().numpy() * mask)
# print(np.count_nonzero(checkpoint['net'][addressbook[0]].cpu().numpy()))
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/pruned-'+args.net+'-ckpt.t7')
best_acc = acc
for epoch in range(start_epoch, start_epoch+20):
train(epoch)
test(epoch)
with open("prune-results-"+str(prune)+'-'+str(args.net)+".txt", "a") as f:
f.write(str(epoch)+"\n")
f.write(str(best_acc)+"\n")