generated from minerllabs/competition_submission_template
-
Notifications
You must be signed in to change notification settings - Fork 11
/
test.py
220 lines (175 loc) · 7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import json
import select
import time
import logging
import os
import threading
from typing import Callable
import aicrowd_helper
import gym
import minerl
import abc
import numpy as np
import coloredlogs
coloredlogs.install(logging.DEBUG)
# our dependencies
import joblib
import sys
sys.path.append(os.path.abspath(os.path.join(__file__, os.pardir, 'mod')))
from dqn_family import get_agent
from env_wrappers import wrap_env
GPU = -1
ARCH = 'distributed_dueling'
NOISY_NET_SIGMA = 0.5
FINAL_EPSILON = 0.01
FINAL_EXPLORATION_FRAMES = 10 ** 6
LR = 0.0000625
ADAM_EPS = 0.00015
PRIORITIZED = True
UPDATE_INTERVAL = 4
REPLAY_CAPACITY = 300000
NUM_STEP_RETURN = 10
AGENT_TYPE = 'CategoricalDoubleDQN'
GAMMA = 0.99
REPLAY_START_SIZE = 5000
TARGET_UPDATE_INTERVAL = 10000
CLIP_DELTA = True
BATCH_ACCUMULATOR = 'mean'
FRAME_SKIP = 4
GRAY_SCALE = False
FRAME_STACK = 4
RANDOMIZE_ACTION = NOISY_NET_SIGMA is None
EVAL_EPSILON = 0.001
maximum_frames = 8000000
STEPS = maximum_frames // FRAME_SKIP
# All the evaluations will be evaluated on MineRLObtainDiamondVectorObf-v0 environment
MINERL_GYM_ENV = os.getenv('MINERL_GYM_ENV', 'MineRLObtainDiamondVectorObf-v0')
MINERL_MAX_EVALUATION_EPISODES = int(os.getenv('MINERL_MAX_EVALUATION_EPISODES', 5))
# Parallel testing/inference, **you can override** below value based on compute
# requirements, etc to save OOM in this phase.
EVALUATION_THREAD_COUNT = int(os.getenv('EPISODES_EVALUATION_THREAD_COUNT', 2))
class EpisodeDone(Exception):
pass
class Episode(gym.Env):
"""A class for a single episode.
"""
def __init__(self, env):
self.env = env
self.action_space = env.action_space
self.observation_space = env.observation_space
self._done = False
def reset(self):
if not self._done:
return self.env.reset()
def step(self, action):
s,r,d,i = self.env.step(action)
if d:
self._done = True
raise EpisodeDone()
else:
return s,r,d,i
# DO NOT CHANGE THIS CLASS, THIS IS THE BASE CLASS FOR YOUR AGENT.
class MineRLAgentBase(abc.ABC):
"""
To compete in the competition, you are required to implement a
SUBCLASS to this class.
YOUR SUBMISSION WILL FAIL IF:
* Rename this class
* You do not implement a subclass to this class
This class enables the evaluator to run your agent in parallel,
so you should load your model only once in the 'load_agent' method.
"""
@abc.abstractmethod
def load_agent(self):
"""
This method is called at the beginning of the evaluation.
You should load your model and do any preprocessing here.
THIS METHOD IS ONLY CALLED ONCE AT THE BEGINNING OF THE EVALUATION.
DO NOT LOAD YOUR MODEL ANYWHERE ELSE.
"""
raise NotImplementedError()
@abc.abstractmethod
def run_agent_on_episode(self, single_episode_env : Episode):
"""This method runs your agent on a SINGLE episode.
You should just implement the standard environment interaction loop here:
obs = env.reset()
while not done:
env.step(self.agent.act(obs))
...
NOTE: This method will be called in PARALLEL during evaluation.
So, only store state in LOCAL variables.
For example, if using an LSTM, don't store the hidden state in the class
but as a local variable to the method.
Args:
env (gym.Env): The env your agent should interact with.
"""
raise NotImplementedError()
#######################
# YOUR CODE GOES HERE #
#######################
class MineRLRainbowBaselineAgent(MineRLAgentBase):
def __init__(self, env):
self.env = env
def load_agent(self):
self.agent = get_agent(
n_actions=self.env.action_space.n, arch=ARCH, n_input_channels=self.env.observation_space.shape[0],
noisy_net_sigma=NOISY_NET_SIGMA, final_epsilon=FINAL_EPSILON,
final_exploration_frames=FINAL_EXPLORATION_FRAMES, explorer_sample_func=self.env.action_space.sample,
lr=LR, adam_eps=ADAM_EPS,
prioritized=PRIORITIZED, steps=STEPS, update_interval=UPDATE_INTERVAL,
replay_capacity=REPLAY_CAPACITY, num_step_return=NUM_STEP_RETURN,
agent_type=AGENT_TYPE, gpu=GPU, gamma=GAMMA, replay_start_size=REPLAY_START_SIZE,
target_update_interval=TARGET_UPDATE_INTERVAL, clip_delta=CLIP_DELTA,
batch_accumulator=BATCH_ACCUMULATOR,
)
self.agent.load(os.path.abspath(os.path.join(__file__, os.pardir, 'train')))
def run_agent_on_episode(self, single_episode_env: Episode):
with self.agent.eval_mode():
obs = single_episode_env.reset()
while True:
a = self.agent.act(obs)
obs, r, done, info = single_episode_env.step(a)
#####################################################################
# IMPORTANT: SET THIS VARIABLE WITH THE AGENT CLASS YOU ARE USING #
######################################################################
AGENT_TO_TEST = MineRLRainbowBaselineAgent # MineRLMatrixAgent, MineRLRandomAgent, YourAgentHere
####################
# EVALUATION CODE #
####################
def main():
assert MINERL_MAX_EVALUATION_EPISODES > 0
assert EVALUATION_THREAD_COUNT > 0
# Create the parallel envs (sequentially to prevent issues!)
kmeans = joblib.load(os.path.abspath(os.path.join(__file__, os.pardir, 'train', 'kmeans.joblib')))
def wrapper(env):
return wrap_env(
env=env, test=True, monitor=False, outdir=None,
frame_skip=FRAME_SKIP, gray_scale=GRAY_SCALE, frame_stack=FRAME_STACK,
randomize_action=RANDOMIZE_ACTION, eval_epsilon=EVAL_EPSILON,
action_choices=kmeans.cluster_centers_,
)
envs = [wrapper(gym.make(MINERL_GYM_ENV)) for _ in range(EVALUATION_THREAD_COUNT)]
# envs = [gym.make(MINERL_GYM_ENV) for _ in range(EVALUATION_THREAD_COUNT)]
agent = AGENT_TO_TEST(envs[0])
# agent = AGENT_TO_TEST()
assert isinstance(agent, MineRLAgentBase)
agent.load_agent()
episodes_per_thread = [MINERL_MAX_EVALUATION_EPISODES // EVALUATION_THREAD_COUNT for _ in range(EVALUATION_THREAD_COUNT)]
episodes_per_thread[-1] += MINERL_MAX_EVALUATION_EPISODES - EVALUATION_THREAD_COUNT *(MINERL_MAX_EVALUATION_EPISODES // EVALUATION_THREAD_COUNT)
# A simple funciton to evaluate on episodes!
def evaluate(i, env):
print("[{}] Starting evaluator.".format(i))
for i in range(episodes_per_thread[i]):
try:
agent.run_agent_on_episode(Episode(env))
except EpisodeDone:
print("[{}] Episode complete".format(i))
pass
evaluator_threads = [threading.Thread(target=evaluate, args=(i, envs[i])) for i in range(EVALUATION_THREAD_COUNT)]
for thread in evaluator_threads:
thread.start()
# wait fo the evaluation to finish
for thread in evaluator_threads:
thread.join()
if __name__ == "__main__":
main()