-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultiples_analyze_binarysystem_simulation.py
145 lines (124 loc) · 5.53 KB
/
multiples_analyze_binarysystem_simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# import matplotlib.pyplot as plt
from os import system, chdir
from sys import argv
from getopt import getopt
from multiples_analyze_functions import *
from multiples_analyze_functions import _get_logg_MS, _list_mag_photometry, _comb_mag_photometry_precomputed
# create a set of simulated triple stars with determined teff/logg/feh that will be analyzed
feh_single_star = 0.0
dir_suffix = ''
process_obj_begin = 0
two_stars = False
equal_teff = False
if len(argv) > 1:
# parse input options
opts, args = getopt(argv[1:], '', ['obj_beg=', 'obj_end=', 'dir_suffix=', 'feh=', 'two_stars=', 'equal_teff='])
# set parameters, depending on user inputs
print opts
for o, a in opts:
if o == '--obj_beg':
process_obj_begin = np.int64(a)
if o == '--obj_end':
process_obj_end = np.int64(a)
if o == '--dir_suffix':
dir_suffix = str(a)
if o == '--two_stars':
if np.int64(a) > 0:
two_stars = True
else:
two_stars = False
if o == '--equal_teff':
if np.int64(a) > 0:
equal_teff = True
else:
equal_teff = False
s1_fit = True
s2_fit = True
s3_fit = True
teff_comb = list([])
if two_stars:
teff_possible = np.arange(4800, 6300, 100)[::-1]
n_teff = len(teff_possible)
# s3_fit = False
for i_1 in np.arange(n_teff)[:10]:
if equal_teff:
teff_comb.append(np.array([teff_possible[i_1], teff_possible[i_1]]))
else:
for i_2 in np.arange(i_1+1, n_teff - 0):
teff_comb.append(np.array([teff_possible[i_1], teff_possible[i_2]]))
else:
teff_possible = np.arange(4800, 6300, 100)[::-1]
n_teff = len(teff_possible)
# s1_fit = False
for i_1 in np.arange(n_teff)[:10]:
if equal_teff:
teff_comb.append(np.array([teff_possible[i_1], teff_possible[i_1], teff_possible[i_1]]))
else:
for i_2 in np.arange(i_1+1, n_teff - 1):
for i_3 in np.arange(i_2+1, n_teff - 0):
teff_comb.append(np.array([teff_possible[i_1], teff_possible[i_2], teff_possible[i_3]]))
print teff_comb
print ' Number of simulations that will be performed:', len(teff_comb)
if 'process_obj_end' not in locals():
process_obj_end = len(teff_comb)
output_dir = 'Simulation_multiples_fit'+dir_suffix
system('mkdir '+out_dir_root+output_dir)
chdir(out_dir_root+output_dir)
table_out_fits = 'fit_results.fits'
if path.isfile(table_out_fits):
print 'Reading previous results'
table_out = Table.read(table_out_fits)
else:
s1_cols = ['s1_teff1', 's1_feh', 'phot_excs', 'phot_chi2', 's1_sim_p', 'spec_chi2', 's1_sim_f']
s2_cols = ['s2_teff1', 's2_teff2', 's2_feh', 'phot_excs2', 'phot_chi22', 's2_sim_p', 'spec_chi22', 's2_sim_f']
s3_cols = ['s3_teff1', 's3_teff2', 's3_teff3', 's3_feh', 'phot_excs3', 'phot_chi23', 's3_sim_p', 'spec_chi23', 's3_sim_f']
all_cols = np.hstack((s1_cols, s2_cols, s3_cols))
all_dtype = np.full(len(all_cols), 'float64')
table_out = Table(names=np.hstack(('sobject_id', 'parallax', all_cols, 'n_stars_p', 'n_stars_f')),
dtype=np.hstack(('S40', 'float64', all_dtype, 'int32', 'int32')))
for teff_system in teff_comb[process_obj_begin: process_obj_end]:
logg_system = _get_logg_MS(teff_system)
s_id = '_'.join(str(t) for t in teff_system)
print 'Working on:', s_id
if np.sum(table_out['sobject_id'] == s_id) >= 1:
print ' SKIPPING: Already processed'
continue
# create object data for this imaginary object
obj_data = Table(_comb_mag_photometry_precomputed(teff_system, logg_system, feh_single_star), names=p_cols)
for c in p_cols_sigma:
obj_data[c] = 0.025
obj_data['Fe_H_cannon'] = feh_single_star
obj_data['Teff_cannon'] = np.mean(teff_system)
obj_data['Logg_cannon'] = np.mean(logg_system)
obj_data['flag_cannon'] = 0
obj_data['sobject_id'] = s_id
obj_data['parallax'] = 100. # parallax equivalent to distance of 10 pc
obj_data['r_est'] = 10. # distance of 10 pc
obj_data['Fe_H_cannon_orig'] = obj_data['Fe_H_cannon']
# create a spectrum of this object
mag_values_3star = _list_mag_photometry(teff_system, logg_system, feh_single_star, p_cols_galah)
flx_3star = synthetic_spectra_combine(teff_system, logg_system, [feh_single_star], mag_values_3star)
flx_3star_std = np.full_like(flx_3star, 0.05)
wvl_3star = cannon_model.dispersion
sub_dir = str(s_id)
system('mkdir ' + sub_dir)
chdir(sub_dir)
s_time = time()
# set obj feh to the init value
fit_res_all = fit_photometry_to_object(obj_data, flx_3star, flx_3star_std, wvl_3star,
fit_single=s1_fit, fit_double=s2_fit, fit_tripple=s3_fit,
# which stellar configuration to fit
complete_wvl_range=True, fe_wvl_range_only=False, write_out=True,
nwalkers=60, n_steps_1=80, n_steps_2=70, n_steps_feh=50, n_threds=30) # number of fitting steps in MCMC
# output required processing time
print 'Fit time: {:.1f} min'.format((time()-s_time)/60.)
chdir('..')
# store results to array and write it out
out_vals = [s_id, 100.]
for f_r in fit_res_all:
out_vals.append(f_r)
# print 'table_out:', len(table_out.colnames)
# print 'fit_res_all:', len(fit_res_all)
# print 'out_vals:', len(out_vals)
table_out.add_row(out_vals)
table_out.write(table_out_fits, overwrite=True)