-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMC_orbital_periods.py
210 lines (182 loc) · 8.37 KB
/
MC_orbital_periods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import numpy as np
import matplotlib.pyplot as plt
import astropy.units as un
import astropy.constants as const
from os import system, chdir
plt.rcParams['font.size'] = 15
#np.seterr(divide='ignore', invalid='ignore')
out_dir = 'MC_orbits'
system('mkdir '+out_dir)
chdir(out_dir)
suffix = ''
print '-------------------------'
print ' Outer pair'
print '-------------------------'
# distribution of radial velocity separations - OUTER PAIR
n_systems = 1000000
mean_rv = 0.
M_prim = 2.*const.M_sun # two Suns in the center
a_dist = (np.random.uniform(100., 350., n_systems) * un.AU).to(un.m)
# linear distribution of semi-major axis
# n_vals = 20000000
# a_vals = np.linspace(100., 350., n_vals)
# p_a_vals = np.linspace(1., 0.3, n_vals)
# p_a_vals = p_a_vals / np.sum(p_a_vals)
# a_dist = (np.random.choice(a_vals, p=p_a_vals, size=n_systems) * un.AU).to(un.m)
# a_const = 10.
# suffix += '_{:.0f}AU'.format(a_const)
#a_dist = (np.random.uniform(a_const, a_const, n_systems) * un.AU).to(un.m)
q_bin = np.random.uniform(0.45, 0.55, n_systems)
sin_i_orb = np.random.uniform(np.sin(np.deg2rad(0.)), np.sin(np.deg2rad(90.)), n_systems) # rad angle
e_orb = np.random.uniform(0.1, 0.8, n_systems)
# argument of periapsis node rad angle
omeg_orb = np.random.uniform(0., 2.*np.pi, n_systems)
# true anomaly
phase = np.random.uniform(0., 1., n_systems)
M_t = 2*np.pi*phase
E_t = np.full_like(M_t, np.pi)
for i in range(100):
E_t = M_t + e_orb * np.sin(E_t)
OMEG_orb = 2.*np.arctan(np.sqrt((1.+e_orb)/(1.-e_orb))*np.tan(E_t/2.))
# orbital period of a modeled system
P_orb = np.sqrt(a_dist**3 * 4.*np.pi**2/(const.G*M_prim*(1.+q_bin)))
# determine maximal distance from the mass center for both components
a_dist_1 = a_dist*q_bin/(1.+q_bin)
a_dist_2 = a_dist/(1.+q_bin)
# determine orbital phase factor for both components
orb_phase_1 = np.cos(OMEG_orb+omeg_orb) + e_orb*np.cos(omeg_orb)
orb_phase_2 = np.cos(OMEG_orb+omeg_orb+np.pi) + e_orb*np.cos(omeg_orb+np.pi) # shifted for 180 deg
# compute both rv values
v_rad_1 = 2.*np.pi*a_dist_1*sin_i_orb/(P_orb*np.sqrt(1.-e_orb**2))*orb_phase_1 + mean_rv
v_rad_2 = 2.*np.pi*a_dist_2*sin_i_orb/(P_orb*np.sqrt(1.-e_orb**2))*orb_phase_2 + mean_rv
# combine them
v_rad_diff = v_rad_2 - v_rad_1
v_rad_sys = 2.*np.pi*a_dist*sin_i_orb/(P_orb*np.sqrt(1.-e_orb**2))*orb_phase_2 + mean_rv
v_rad = v_rad_diff.to(un.km/un.s).value
v_rad_sys = v_rad_sys.to(un.km/un.s).value
# plt.hist(v_rad, bins=100, alpha=0.2, normed=True)
rv_perc = np.percentile(np.abs(v_rad), [68, 95, 99.7])
print 'Period/5 >= 30yr:', 100.*np.sum(P_orb.to(un.yr).value/5. >= 30.)/len(P_orb)
print 'Less than 4:', 100.*np.sum(np.abs(v_rad) <= 4.)/len(v_rad)
print 'Less than 5:', 100.*np.sum(np.abs(v_rad) <= 5.)/len(v_rad)
print 'Less than 6:', 100.*np.sum(np.abs(v_rad) <= 6.)/len(v_rad)
print 'Less than 7:', 100.*np.sum(np.abs(v_rad) <= 7.)/len(v_rad)
print 'Less than 8:', 100.*np.sum(np.abs(v_rad) <= 8.)/len(v_rad)
print 'Less than 9:', 100.*np.sum(np.abs(v_rad) <= 9.)/len(v_rad)
rv_r = 11
plt.figure(figsize=(7, 4))
plt.hist(v_rad, bins=70, range=(-rv_r, rv_r), color='black', alpha=0.2, density=True)
plt.hist(v_rad, bins=70, range=(-rv_r, rv_r), color='black', alpha=1, density=True, histtype='step')
plt.xlim(-rv_r, rv_r)
plt.yticks([0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4], ['0.0', '', '0.1', '', '0.2', '', '0.3', '', '0.4'])
plt.grid(alpha=0.2, color='black', ls='--')
print 'RV percentiles:', rv_perc
for rv_perc_val in rv_perc:
plt.axvline(rv_perc_val, ls='--', alpha=0.75, color='red', lw=1.2)
plt.axvline(-rv_perc_val, ls='--', alpha=0.75, color='red', lw=1.2)
plt.ylabel('Probability density')
plt.xlabel(u'Radial velocity separation v$_2$ - v$_1$ [km s$^{-1}$]')
plt.tight_layout()
# plt.show()
plt.savefig('MC_rv_from_sep'+suffix+'_outer.png', dpi=200)
plt.close()
idx_rv_low = np.abs(v_rad) <= 8
orbits_years = P_orb.to(un.yr).value
print 'Orbits limits:', np.nanmin(orbits_years), np.nanmax(orbits_years), 'years'
plt.figure(figsize=(7, 4))
plt.hist(orbits_years, bins=70, color='black', alpha=0.2, density=True)
plt.hist(orbits_years, bins=70, color='black', alpha=1, density=True, histtype='step')
plt.hist(orbits_years[idx_rv_low], bins=70, color='C3', alpha=0.2, density=True)
plt.ylabel('Probability density')
plt.xlabel(u'Orbital period [yr]')
plt.grid(alpha=0.2, color='black', ls='--')
plt.tight_layout()
plt.savefig('MC_rv_from_sep_period'+suffix+'_outer.png', dpi=200)
plt.close()
print '-------------------------'
print ' Inner pair'
print '-------------------------'
suffix = ''
# distribution of radial velocity separations - INNER PAIR
n_systems = 1000000
mean_rv = 0.
M_prim = 1.*const.M_sun # two Suns in the center
q_bin = np.random.uniform(0.9, 1.0, n_systems)
sin_i_orb = np.random.uniform(np.sin(np.deg2rad(0.)), np.sin(np.deg2rad(90.)), n_systems) # rad angle
e_orb = np.random.uniform(0.1, 0.8, n_systems)
# argument of periapsis node rad angle
omeg_orb = np.random.uniform(0., 2.*np.pi, n_systems)
# true anomaly
phase = np.random.uniform(0., 1., n_systems)
M_t = 2*np.pi*phase
E_t = np.full_like(M_t, np.pi)
for i in range(100):
E_t = M_t + e_orb * np.sin(E_t)
OMEG_orb = 2.*np.arctan(np.sqrt((1.+e_orb)/(1.-e_orb))*np.tan(E_t/2.))
# orbital period of a modeled system
# P_const = 40.
# suffix += '_{:.0f}yr'.format(P_const)
# P_orb = (np.random.uniform(P_const, P_const, n_systems)*un.yr).to(un.s)
P_orb = P_orb/5.
a_dist = ((const.G * M_prim * (1. + q_bin) * P_orb**2) / (4. * np.pi**2))**(1./3.)
# determine maximal distance from the mass center for both components
a_dist_1 = a_dist*q_bin/(1.+q_bin)
a_dist_2 = a_dist/(1.+q_bin)
# determine orbital phase factor for both components
orb_phase_1 = np.cos(OMEG_orb+omeg_orb) + e_orb*np.cos(omeg_orb)
orb_phase_2 = np.cos(OMEG_orb+omeg_orb+np.pi) + e_orb*np.cos(omeg_orb+np.pi) # shifted for 180 deg
# compute both rv values
v_rad_1 = 2.*np.pi*a_dist_1*sin_i_orb/(P_orb*np.sqrt(1.-e_orb**2))*orb_phase_1 + mean_rv
v_rad_2 = 2.*np.pi*a_dist_2*sin_i_orb/(P_orb*np.sqrt(1.-e_orb**2))*orb_phase_2 + mean_rv
# combine them
v_rad_diff = v_rad_2 - v_rad_1
v_rad_sys = 2.*np.pi*a_dist*sin_i_orb/(P_orb*np.sqrt(1.-e_orb**2))*orb_phase_2 + mean_rv
v_rad = v_rad_diff.to(un.km/un.s).value
v_rad_sys = v_rad_sys.to(un.km/un.s).value
rv_perc = np.percentile(np.abs(v_rad), [68, 95, 99.7])
print 'Less than 3:', 100.*np.sum(np.abs(v_rad) <= 3)/len(v_rad)
print 'Less than 4:', 100.*np.sum(np.abs(v_rad) <= 4)/len(v_rad)
print 'Less than 5:', 100.*np.sum(np.abs(v_rad) <= 5)/len(v_rad)
print 'Less than 6:', 100.*np.sum(np.abs(v_rad) <= 6)/len(v_rad)
print 'Less than 7:', 100.*np.sum(np.abs(v_rad) <= 7)/len(v_rad)
print 'Less than 8:', 100.*np.sum(np.abs(v_rad) <= 8)/len(v_rad)
rv_r = 11
plt.figure(figsize=(7, 4))
plt.hist(v_rad, bins=70, range=(-rv_r, rv_r), color='black', alpha=0.2, density=True)
plt.hist(v_rad, bins=70, range=(-rv_r, rv_r), color='black', alpha=1, density=True, histtype='step')
plt.xlim(-rv_r, rv_r)
plt.yticks([0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3], ['0.0', '', '0.1', '', '0.2', '', '0.3'])
plt.grid(alpha=0.2, color='black', ls='--')
print 'RV percentiles:', rv_perc
for rv_perc_val in rv_perc:
plt.axvline(rv_perc_val, ls='--', alpha=0.75, color='red', lw=1.2)
plt.axvline(-rv_perc_val, ls='--', alpha=0.75, color='red', lw=1.2)
plt.ylabel('Probability density')
plt.xlabel(u'Radial velocity separation v$_2$ - v$_1$ [km s$^{-1}$]')
plt.tight_layout()
# plt.show()
plt.savefig('MC_rv_from_sep'+suffix+'_inner.png', dpi=200)
plt.close()
idx_rv_low = np.abs(v_rad) <= 5
orbits_years = P_orb.to(un.yr).value
print 'Orbits limits:', np.nanmin(orbits_years), np.nanmax(orbits_years), 'years'
plt.figure(figsize=(7, 4))
plt.hist(orbits_years, bins=70, color='black', alpha=0.2, density=True)
plt.hist(orbits_years, bins=70, color='black', alpha=1, density=True, histtype='step')
plt.hist(orbits_years[idx_rv_low], bins=70, color='C3', alpha=0.2, density=True)
plt.ylabel('Probability density')
plt.xlabel(u'Orbital period [yr]')
plt.grid(alpha=0.2, color='black', ls='--')
plt.tight_layout()
plt.savefig('MC_rv_from_sep_period'+suffix+'_inner.png', dpi=200)
plt.close()
semi_axis = a_dist.to(un.AU).value
plt.figure(figsize=(7, 4))
plt.hist(semi_axis, bins=70, color='black', alpha=0.2, density=True)
plt.hist(semi_axis, bins=70, color='black', alpha=1, density=True, histtype='step')
plt.ylabel('Probability density')
plt.xlabel(u'Semi-major axis [AU]')
plt.grid(alpha=0.2, color='black', ls='--')
plt.tight_layout()
plt.savefig('MC_rv_from_sep_semiaxis'+suffix+'_inner.png', dpi=200)
plt.close()