-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathprocess_measurement.py
112 lines (87 loc) · 3.13 KB
/
process_measurement.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import numpy as np
from math import sqrt, fabs, sin, cos, atan2
"""
This script provides various process (motion) and measurement models to be used by a UKF
"""
def ctrv(input_state, dt):
"""
Implement constant turn-rate velocity (CTRV) process model
Input: input_state: [px, py, v, yaw, yawd] or [px, py, v, yaw, yawd, nu_a, nu_yawdd]
Output: ouput_state: [px, py, v, yaw, yawd]
"""
px = input_state[0]
py = input_state[1]
v = input_state[2]
yaw = input_state[3]
yawd = input_state[4]
if fabs(yawd) > 0.001: # avoid division by zero due to very small yawd
px_p = px + (v/yawd) * (sin(yaw + yawd*dt) - sin(yaw))
py_p = py + (v/yawd) * (-cos(yaw + yawd * dt) + cos(yaw))
else:
px_p = px + v*cos(yaw)*dt
py_p = py + v*sin(yaw)*dt
v_p = v
yaw_p = yaw + yawd*dt
yawd_p = yawd
if len(input_state) == 7: # When the effect of nu_a, and nu_yawdd need to be considered, i.e, for
# non-additive noise, the state needs to be augmented.
nu_a = input_state[5]
nu_yawdd = input_state[6]
px_p += 0.5 * nu_a * cos(yaw) * dt * dt
py_p += 0.5 * nu_a * sin(yaw) * dt * dt
yaw_p += 0.5 * nu_yawdd * dt * dt;
yawd_p += nu_yawdd * dt;
output_state=np.array([[px_p, py_p, v_p, yaw_p, yawd_p]])
return output_state
def cv(input_state, dt):
"""
Implement constant velocity (CV) process model
Input: input_state: [px, py, v, yaw, yawd] or [px, py, v, yaw, yawd, nu_a, nu_yawdd]
Output: ouput_state: [px, py, v, yaw, yawd]
"""
px = input_state[0]
py = input_state[1]
v = input_state[2]
yaw = input_state[3]
yawd = input_state[4]
px_p = px + v*cos(yaw)*dt
py_p = py + v*sin(yaw)*dt
v_p = v # constant velocity
yaw_p = yaw # no turn, so yaw state the same
yawd_p = 0 # ?
if len(input_state) == 7: # When the effect of nu_a, and nu_yawdd need to be considered
nu_a = input_state[5]
nu_yawdd = input_state[6]
px_p += 0.5 * nu_a * cos(yaw) * dt * dt
py_p += 0.5 * nu_a * sin(yaw) * dt * dt
yaw_p += 0.5 * nu_yawdd * dt * dt;
yawd_p += nu_yawdd * dt;
output_state=np.array([[px_p, py_p, v_p, yaw_p, yawd_p]])
return output_state
def lidar(input_state):
"""
LIDAR measurement model
Input: CTRV state representation [p_x, p_y, v, yaw, yawd]
Output: LIDAR measurement [p_x, p_y]
"""
return input_state[0:2]
def radar(input_state):
"""
RADAR measurement model
Input: CTRV state representation [p_x, p_y, v, yaw, yawd]
Output: RADAR measurement [rho, phi, rho_dot]
"""
p_x = input_state[0]
p_y = input_state[1]
v = input_state[2]
yaw = input_state[3]
v_x = cos(yaw)*v;
v_y= sin(yaw)*v;
c = sqrt(p_x*p_x+p_y*p_y);
if fabs(c) < 0.0001: # warning for divsion by zero
print("Error -Division by Zero")
c = 0.0001;
rho = c;
phi = atan2(p_y, p_x);
rho_dot = (p_x*v_x + p_y*v_y)/c
return np.array([rho, phi, rho_dot])