-
Notifications
You must be signed in to change notification settings - Fork 13
/
run_test_cbmv.sh
executable file
·30 lines (25 loc) · 1.18 KB
/
run_test_cbmv.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#!/bin/bash
#modelname="./models/saved/modelall_4m.rf" # the trained random forest model, with version 0.18.2 sklearn.
modelname="./models/saved/model-1-T48-L700-entropy-Img10-CensW11-NccW3-SadW5-SobW5" # the trained random forest model, with version 0.19.1 sklearn.
#--------------------------------
# for local expansion;
data_path="./datasets/MiddEval3/trainingQ/"
test_set="Adirondack"
resultDir="./results/localExp-cbmv/"
if [ ! -d $resultDir ]; then
mkdir $resultDir
echo "mkdir $resultDir"
fi
limg="${test_set}/im0.png"
rimg="${test_set}/im1.png"
disp_save="${resultDir}${test_set}_disp.pfm"
###########################
## using local expansion ##
###########################
python main.py --saveCostVolume --loadCostVolume --data_path=$data_path \
--test_set=$test_set --model=$modelname --prob_save_path=$resultDir \
--disp_save_path=$disp_save --l=$limg --r=$rimg --isLocalExp
#####################################
## using post-processing in MC-CNN ##
#####################################
python main.py --saveCostVolume --loadCostVolume --data_path=$data_path --test_set=$test_set --model=$modelname --prob_save_path=$resultDir --disp_save_path=$disp_save --l=$limg --r=$rimg