-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernel.cu
174 lines (149 loc) · 4.67 KB
/
kernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#include <cuda.h>
#include <cuda_runtime.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "kernel.h"
__global__ void mandelbrot_kernel(int *canvas, int *num_it, double l_margin, double r_margin, double u_margin, double d_margin, int N, double log_log_bailout, double ln2, double ln2_inv)
{
int num_rows = blockDim.y*gridDim.y;
int num_cols = blockDim.x*gridDim.x;
double z_n_x = 0;
double z_n_y = 0;
double tmp_x, tmp_y;
int tid_x = blockIdx.x*blockDim.x + threadIdx.x;
int tid_y = blockIdx.y*blockDim.y + threadIdx.y;
double c_x = l_margin + (tid_x/(double)(num_cols -1))*(r_margin - l_margin);
double c_y = d_margin + (tid_y/(double)(num_rows -1))*(u_margin - d_margin);
int escape_time = 0;
int idx = tid_y*num_cols + tid_x;
while(z_n_x*z_n_x + z_n_y*z_n_y < bailout && escape_time<N)
{
tmp_x = z_n_x*z_n_x - z_n_y*z_n_y;
tmp_y = 2*z_n_x*z_n_y;
z_n_x = tmp_x + c_x;
z_n_y = tmp_y + c_y;
escape_time ++;
}
if (escape_time>=N)
canvas[idx] = -1;
else
{
// double mod = sqrt(z_n_x*z_n_x + z_n_y*z_n_y);
// double c = (log_log_bailout - log(log(mod))) * ln2_inv;
// double ff = (log(c/64+1)/ln2+0.45);
// double fc = (c*0.8 + escape_time)*100;
// ff = ff - trunc(ff);
// fc = ((int)fc)%GRADIENTLENGTH;
// int color_idx = ff*GRADIENTLENGTH + 0.5;
// int color_idx = ((int)fc);
canvas[idx] = escape_time;
// canvas[idx] = (int)(((escape_time - log(log(mod))/log(2.0))/(double)N)*255.0);
// canvas[idx] = (int)(((double)escape_time/(double) N)*255.0);
}
num_it[idx] = escape_time;
}
void render(int *h_canvas, double zoom, long double center_x,long double center_y, double init_len, int dim_x, int dim_y, double N)
{
double ln2_inv = 1.44269504088896340735992468100189213742664595415299;
double ln2 = 0.69314718055994530941723212145817656807550013436026;
cudaError_t err = cudaSuccess;
double l_margin = center_x - init_len/2.0;
double r_margin = center_x + init_len/2.0;
double u_margin = center_y + init_len/2.0;
double d_margin = center_y - init_len/2.0;
dim3 threads_per_block(32,32,1);
dim3 blocks_per_grid(dim_x/32,dim_y/32,1);
size_t canvas_size = dim_x*dim_y*sizeof(int);
// if(dim_x%16!=0 || dim_y%16!=0)
// {
// canvas_size = (16-(dim_x%16) + dim_x)*(16-(dim_y%16) + dim_y)*sizeof(int);
// }
int *h_num_it = (int*)malloc(canvas_size);
memset(h_num_it, 0, canvas_size);
int *d_canvas = NULL;
err = cudaMalloc((void **)&d_canvas, canvas_size);
if(err != cudaSuccess)
{
printf("Error in cudaMalloc : d_canvas\n");
exit(EXIT_FAILURE);
}
int *d_num_it = NULL;
err = cudaMalloc((void **)&d_num_it, canvas_size);
if(err != cudaSuccess)
{
printf("Error in cudaMalloc : d_num_it\n");
exit(EXIT_FAILURE);
}
err = cudaMemcpy(d_canvas, h_canvas, canvas_size, cudaMemcpyHostToDevice);
if(err != cudaSuccess)
{
printf("Error in cudaMemcpy : d_canvas\n");
exit(EXIT_FAILURE);
}
err = cudaMemcpy(d_num_it, h_num_it, canvas_size, cudaMemcpyHostToDevice);
if(err != cudaSuccess)
{
printf("Error in cudaMemcpy : d_num_it\n");
exit(EXIT_FAILURE);
}
double log_log_bailout = log(log(bailout));
mandelbrot_kernel <<<blocks_per_grid, threads_per_block>>> (d_canvas, d_num_it, l_margin, r_margin, u_margin, d_margin, N, log_log_bailout, ln2, ln2_inv);
err = cudaGetLastError();
if(err!=cudaSuccess)
{
printf("Error in kernel\n");
exit(EXIT_FAILURE);
}
// printf("Getting the canvas back from kernel\n");
// fflush(stdout);
err = cudaMemcpy(h_canvas, d_canvas, canvas_size, cudaMemcpyDeviceToHost);
if(err!=cudaSuccess)
{
printf("Error in cudaMemcpy: h_canvas\n");
exit(EXIT_FAILURE);
}
err = cudaMemcpy(h_num_it, d_num_it, canvas_size, cudaMemcpyDeviceToHost);
if(err!=cudaSuccess)
{
printf("Error in cudaMemcpy: h_num_it\n");
exit(EXIT_FAILURE);
}
// printf("Freeing device memory\n");
// fflush(stdout);
err = cudaFree(d_canvas);
if(err!=cudaSuccess)
{
printf("Error in cudaFree: d_canvas\n");
exit(EXIT_FAILURE);
}
err = cudaDeviceReset();
if(err!=cudaSuccess)
{
printf("Error in cudaDeviceReset\n");
exit(EXIT_FAILURE);
}
// printf("analyzing escape times\n");
// fflush(stdout);
// int max_esc = 0;
// int min_esc = 1000;
// double avg_esc = 0.0;
// int outside_count = 0;
// for(int i=0;i<dim_y;i++)
// {
// for(int j=0;j<dim_x;j++)
// {
// if (h_canvas[i*dim_x + j]!=0)
// {
// if (h_num_it[i*dim_x + j]>max_esc)
// max_esc = h_num_it[i*dim_x + j];
// if (h_num_it[i*dim_x + j]<min_esc)
// min_esc = h_num_it[i*dim_x + j];
// avg_esc += h_num_it[i*dim_x + j];
// outside_count ++;
// }
// }
// }
// avg_esc = avg_esc/outside_count;
// printf("max it:%d, min_it:%d, outside_count:%d, avg_it:%lf",max_esc, min_esc, outside_count, avg_esc);
}