-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_instance.py
104 lines (90 loc) · 4.11 KB
/
train_instance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import argparse
import torch
import torch.nn as nn
import numpy as np
import os
from torch.nn.utils.rnn import pack_padded_sequence
from torchvision import transforms
import torch.nn.functional as F
import time
import random
import json
from utils.load_instance import get_loader
from tensorboardX import SummaryWriter
from model.miml import MIML
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
def visualization(features):
pass
def main(args):
print("build data loader ...")
# load data
train_loader = get_loader(img_dir=args.img_dir, anno_dir=args.anno_dir, coco_cat_id_to_class_ind_path=args.cat_id2class_id,
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
print("build the models ...")
# Build the models
model = MIML(L=args.L, K=args.K, batch_size=args.batch_size,
fine_tune=args.fine_tune)
model = model.cuda()
model = nn.DataParallel(model, device_ids=[0, 1])
optimizer = torch.optim.Adam(
[{'params': filter(lambda p: p.requires_grad, model.module.base_model.parameters()), 'lr': args.fine_tune_lr},
{'params': model.module.sub_concept_layer.parameters(), 'lr': args.learning_rate}],
)
# add
optimizer = nn.DataParallel(optimizer, device_ids=[0, 1])
critiation = nn.BCELoss()
critiation = nn.DataParallel(critiation, device_ids=[0, 1])
time_start = time.time()
total_step = len(train_loader)
writer = SummaryWriter(log_dir='./loginstance')
for epoch in range(args.num_epochs):
for i, (imgs, tars) in enumerate(train_loader):
images = imgs.cuda()
targets = tars.float().cuda()
outputs = model(images)
loss = critiation(outputs, targets).mean()
model.zero_grad()
loss.backward()
optimizer.module.step()
# Print log info
if i % args.log_step == 0:
time_end = time.time()
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Time:{}'
.format(epoch, args.num_epochs, i, total_step, loss.item(), time_end-time_start))
time_start = time_end
writer.add_scalars(
'loss', {'loss': loss.item()}, epoch*total_step+i)
# if i == 10:
# writer.close()
# Save the model checkpoints
if (epoch+1) % args.save_step == 0:
torch.save(model.state_dict(), os.path.join(
args.model_path, 'instance-{}-{}.ckpt'.format(epoch+1, i+1)))
writer.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--img_dir', type=str,
default='/home/lkk/datasets/coco2014/train2014', help='img path')
parser.add_argument('--model_path', type=str,
default='models/', help='path for saving trained models')
parser.add_argument('--anno_dir', type=str,
default='/home/lkk/datasets/coco2014/annotations/instances_train2014.json', help='path for anno')
parser.add_argument('--cat_id2class_id', type=str,
default='/home/lkk/code/MIML/coco_cat_id_to_class_ind.json', help='path for id2id')
parser.add_argument('--split', type=str,
default='train', help='train/val/test')
parser.add_argument('--log_step', type=int, default=1,
help='step size for prining log info')
parser.add_argument('--save_step', type=int, default=1,
help='step size for saving trained models')
# paraneters
parser.add_argument('--num_epochs', type=int, default=5)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--L', type=int, default=80)
parser.add_argument('--K', type=int, default=20)
parser.add_argument('--fine_tune', action="store_true", default=True)
parser.add_argument('--num_workers', type=int, default=0)
parser.add_argument('--fine_tune_lr', type=float, default=4e-5)
parser.add_argument('--learning_rate', type=float, default=1e-3)
args = parser.parse_args()
main(args)