-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDQN.py
178 lines (159 loc) · 8.29 KB
/
DQN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from Agent import Agent
import random
from Utils import Utils
from time import time_ns
import torch
from collections import deque
ALPHA = .8
class QNetwork(torch.nn.Module):
def __init__(self, board_size, hidden_layer_size):
super(QNetwork, self).__init__()
self.input = torch.nn.Linear(int((board_size * (board_size - 1)) / 2), hidden_layer_size)
self.l2 = torch.nn.Linear(hidden_layer_size, hidden_layer_size)
self.l3 = torch.nn.Linear(hidden_layer_size, hidden_layer_size // 2)
self.l4 = torch.nn.Linear(hidden_layer_size // 2, hidden_layer_size // 2)
self.output = torch.nn.Linear(hidden_layer_size // 2, int((board_size * (board_size - 1)) / 2))
def forward(self, x):
y = torch.nn.functional.relu(self.input(x))
y = torch.nn.functional.relu(self.l2(y))
y = torch.nn.functional.relu(self.l3(y))
y = torch.nn.functional.relu(self.l4(y))
y = self.output(y)
return y
class DQN(Agent):
def __init__(self, color, hyperparameters, training=True, number_of_nodes: int = 6, chain_length: int = 3):
super(DQN, self).__init__(color, hyperparameters)
self.q_network = QNetwork(number_of_nodes, hyperparameters['HIDDEN_LAYER_SIZE'])
self.optimizer = torch.optim.Adam(self.q_network.parameters(), lr=hyperparameters['LEARNING_RATE'],
amsgrad=False)
self.loss_fn = torch.nn.MSELoss(reduction='sum')
self.q_network.apply(Utils.weight_initialization)
self.target_network = QNetwork(number_of_nodes, hyperparameters['HIDDEN_LAYER_SIZE'])
self.target_network.load_state_dict(self.q_network.state_dict())
self.state = Utils.make_graph(number_of_nodes)
self.chain_length = chain_length
self.action = None
self.color = color
self.hyperparameters = hyperparameters
self.training = training
self.experience_buffer = deque(maxlen=hyperparameters['BUFFER_SIZE'])
self.update_count = 0
self.number_of_nodes = number_of_nodes
def move(self, opponent):
# Update network based on the state the opponent just put the environment in
start_time = time_ns()
self.number_of_moves += 1
self.hyperparameters['EPSILON'] *= self.hyperparameters['EPSILON_DECAY']
if random.random() < self.hyperparameters["EPSILON"] and self.training:
self.action = random.choice(list(Utils.get_uncolored_edges(self.state)))
else:
max_q, self.action = self.get_max_q(self.state)
new_state = Utils.transition(self.state, self.color, self.action)
# compute reward
reward = Utils.reward(new_state, self.chain_length, self.color)
# update q table
if self.training:
self.update_q(self.state, self.action, reward)
try:
opponent.opp_move(self.state, self.action, self.color)
except AttributeError:
opponent.state = self.state
self.state = new_state
self.avg_move_time = (self.avg_move_time*(self.number_of_moves-1 if self.number_of_moves > 1 else 1) + (time_ns() - start_time)) / self.number_of_moves
# If its the end, return False, otherwise make an action
if (r := Utils.reward(self.state, self.chain_length, self.color)) == 1 or len(
Utils.get_uncolored_edges(self.state)) < 1:
self.wins += r
if r == 0:
Utils.display_graph(self.state)
raise Exception
return True
else:
return False
def update_q(self, state, action, reward, color=None):
if color is None:
color = self.color
self.experience_buffer.append((Utils.weighted_adj(state, color), action, reward,
Utils.weighted_adj(Utils.transition(state, color, action), color)))
self.update_count += 1
if len(self.experience_buffer) > self.hyperparameters['BATCH_SIZE']:
sample = random.sample(self.experience_buffer, self.hyperparameters['BATCH_SIZE'])
training_input = torch.empty(self.hyperparameters['BATCH_SIZE'],
int((self.number_of_nodes * (self.number_of_nodes - 1)) / 2),
dtype=torch.float, requires_grad=True)
training_output = torch.empty(self.hyperparameters['BATCH_SIZE'],
int((self.number_of_nodes * (self.number_of_nodes - 1)) / 2),
dtype=torch.float, requires_grad=True)
mem_count = 0
current_states = torch.stack([exp[0] for exp in sample])
new_states = torch.stack([exp[3] for exp in sample])
current_qs = self.q_network.forward(current_states)
m_current_qs = current_qs.detach_().clone().requires_grad_(True)
with torch.no_grad():
new_qs_max = torch.max(self.target_network.forward(new_states), 1)
for mem, max_q, output in zip(sample, new_qs_max[0], m_current_qs):
s, a, r, ns = mem
max_q = max_q.item()
with torch.no_grad():
ind = int((a[0] * (self.number_of_nodes - 1) + a[1] - (a[0] * (a[0] + 1)) / 2) - 1)
output[ind] = (1 - ALPHA) * (output[ind]) + ALPHA * (r + self.hyperparameters['GAMMA'] * max_q)
training_input[mem_count] = current_qs[mem_count]
training_output[mem_count] = output
mem_count += 1
loss = self.loss_fn(training_input, training_output.detach())
self.loss += loss.item()
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
if self.update_count % self.hyperparameters['TARGET_MODEL_SYNC']:
self.target_network.load_state_dict(self.q_network.state_dict())
def get_q(self, state, action):
action_index = int((action[0] * (self.number_of_nodes - 1) + action[1] - (action[0] * (action[0] + 1)) / 2) - 1)
q_val = self.q_network.forward(Utils.weighted_adj(state, self.color))[action_index].item()
return q_val
def get_max_q(self, state):
# Getting max Q-value
u_es = Utils.get_uncolored_edges(state)
if len(u_es) < 1:
return 0, None
max_q = None
max_actions = []
for edge in u_es:
if max_q is None or self.get_q(state, edge) > max_q:
max_q = self.get_q(state, edge)
max_actions = [edge]
elif self.get_q(state, edge) == max_q:
max_actions.append(edge)
action = random.choice(max_actions)
return max_q, action
def opp_move(self, state, action, c):
if self.training and self.action is not None:
reward = Utils.reward(Utils.transition(state, c, action), self.chain_length, self.color)
self.update_q(state, action, reward, color=c)
self.state = Utils.transition(state, c, action)
def reset(self):
self.state = Utils.make_graph(self.number_of_nodes)
self.action = None
self.loss = 0
self.number_of_moves = 0
def hard_reset(self):
self.reset()
self.q_network = QNetwork(self.number_of_nodes, self.hyperparameters['HIDDEN_LAYER_SIZE'])
self.optimizer = torch.optim.Adam(self.q_network.parameters(), lr=self.hyperparameters['LEARNING_RATE'],
amsgrad=False)
self.loss_fn = torch.nn.MSELoss(reduction='mean')
self.q_network.apply(Utils.weight_initialization)
self.target_network = QNetwork(self.number_of_nodes, self.hyperparameters['HIDDEN_LAYER_SIZE'])
self.target_network.load_state_dict(self.q_network.state_dict())
self.epoch = 0
self.wins = 0
self.writer.close()
def store(self):
self.save_model(self.q_network, self.target_network, self.optimizer)
def open(self, path):
checkpoint = torch.load(path)
self.q_network.load_state_dict(checkpoint['q_model_state_dict'])
self.target_network.load_state_dict(checkpoint['target_model_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
self.epoch = checkpoint['epoch']
self.loss = checkpoint['loss']