-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfreeze.py
73 lines (62 loc) · 2.51 KB
/
freeze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#!/usr/bin/python3
# -*- encoding: utf-8 -*-
'''
@File : freeze.py
@Time : 2020/03/10 20:46:05
@Author : Mrtutu
@Version : 1.0
@Contact : zhangwei3.0@qq.com
@License :
@Desc : None
'''
# here put the import lib
import paddle.fluid as fluid
import config
train_parameters = config.init_train_parameters()
if train_parameters['yolo_type'] == 'ShuffleNetV2_YOLOv3':
from models.ShuffleNetV2_YOLOv3 import get_yolo
elif train_parameters['yolo_type'] == 'DarkNet53_YOLOv3':
from models.DarkNet53_YOLOv3 import get_yolo
def freeze_model(score_threshold):
"""
模型固化
"""
exe = fluid.Executor(fluid.CPUPlace())
ues_tiny = train_parameters['use_tiny']
yolo_config = train_parameters['yolo_tiny_cfg'] if ues_tiny else train_parameters['yolo_cfg']
path = train_parameters['save_model_dir']
model = get_yolo(ues_tiny, train_parameters['class_dim'], yolo_config['anchors'], yolo_config['anchor_mask'])
image = fluid.layers.data(name='image', shape=yolo_config['input_size'], dtype='float32')
image_shape = fluid.layers.data(name="image_shape", shape=[2], dtype='float32')
boxes = []
scores = []
outputs = model.net(image)
downsample_ratio = model.get_downsample_ratio()
for i, out in enumerate(outputs):
box, score = fluid.layers.yolo_box(
x=out,
img_size=image_shape,
anchors=model.get_yolo_anchors()[i],
class_num=model.get_class_num(),
conf_thresh=train_parameters['valid_thresh'],
downsample_ratio=downsample_ratio,
name="yolo_box_" + str(i))
boxes.append(box)
scores.append(fluid.layers.transpose(score, perm=[0, 2, 1]))
downsample_ratio //= 2
pred = fluid.layers.multiclass_nms(
bboxes=fluid.layers.concat(boxes, axis=1),
scores=fluid.layers.concat(scores, axis=2),
score_threshold=score_threshold,
nms_top_k=train_parameters['nms_top_k'],
keep_top_k=train_parameters['nms_pos_k'],
nms_threshold=train_parameters['nms_thresh'],
background_label=-1,
name="multiclass_nms")
freeze_program = fluid.default_main_program()
fluid.io.load_persistables(exe, path, freeze_program)
freeze_program = freeze_program.clone(for_test=True)
fluid.io.save_inference_model(train_parameters['freeze_dir'], ['image', 'image_shape'], pred, exe, freeze_program, model_filename='__model__', params_filename='params')
print("freeze end")
if __name__ == '__main__':
freeze_model(0.1)