-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy path3-1.train_structure_predictor_cell.py
329 lines (281 loc) · 11.8 KB
/
3-1.train_structure_predictor_cell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import argparse
import sys
import os
import shutil
import json
import time
import warnings
from random import sample
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.optim.lr_scheduler import ExponentialLR
from source.models_cryslator import Generator
from source.GCN_cell import SemiFullGN
from source.data_cell import collate_pool, get_data_loader, CIFData,GaussianDistance
from source.GCN import GCN
def load_gcn(gcn_name):
checkpoint = torch.load(gcn_name)
x = checkpoint['model_args']
N_tr= x['N_tr']
N_val = x['N_val']
N_test = x['N_test']
atom_fea_len = x['atom_fea_len']
h_fea_len = x['h_fea_len']
n_conv = x['n_conv']
n_h = x['n_h']
orig_atom_fea_len = x['orig_atom_fea_len']
nbr_fea_len = x['nbr_fea_len']
model =GCN(orig_atom_fea_len,nbr_fea_len,atom_fea_len,n_conv,h_fea_len,n_h)
model.cuda()
model.load_state_dict(checkpoint['state_dict'])
model.eval()
return N_tr, N_val, N_test, model, h_fea_len
def main():
#taken from sys.argv
model_folder = 'saved_models'
os.makedirs(model_folder, exist_ok=True)
chk_name = model_folder+'/'+'chk_cell'
best_name = model_folder+'/'+'best_cell'
save_name = model_folder+'/'+'save_cell'
best_gcn = model_folder+'/'+'best_xmno'
N_tr, N_val, N_test, gcn, h_fea_len_gcn = load_gcn(best_gcn)
#var. for dataset loader
root_dir ='../Cryslator/data/jsons_xmno_rcut6/'
root_dir_pos ='../Cryslator/data/pos_xmno/'
root_dir_cell ='../Cryslator/data/cell_xmno/'
max_num_nbr = 8
radius = 6
dmin = 0
step = 0.2
random_seed = 1234
batch_size = 32
#_tot = N_*2 #full data
N_tr = N_tr*2
N_val = N_val*2
N_test = N_test*2
#print(N_tr, N_val, N_test)
num_workers = 0
pin_memory = False
return_test = True
gdf = GaussianDistance(dmin=0.0, dmax=6.0, step=0.2)
#var for model
#model_args = torch.load(best_gcn)['model_args']
atom_fea_len = 256
h_fea_len = 256
n_conv = 7
n_h = 3
lr_decay_rate = 0.98
lr = 0.001
weight_decay = 0.0
resume = False
resume_path = 'ddd'
model_args = {'radius':radius,'dmin':dmin,'step':step,'batch_size':batch_size,
'random_seed':random_seed,'N_tr':N_tr,'N_val':N_val,'N_test':N_test,
'atom_fea_len':atom_fea_len,'h_fea_len':h_fea_len,
'n_conv':n_conv,'n_h':n_h,'lr':lr,'lr_decay_rate':lr_decay_rate,'weight_decay':weight_decay}
#var for training
best_mae_error = 1e10
start_epoch = 0
epochs = 500
#setup
train_csv = root_dir+'/'+'id_prop_train_all.csv'
val_csv = root_dir+'/'+'id_prop_val_all.csv'
test_csv = root_dir+'/'+'id_prop_test_all.csv'
train_dataset = CIFData(root_dir,root_dir_pos,root_dir_cell,train_csv,radius,dmin,step,random_seed)
val_dataset = CIFData(root_dir,root_dir_pos,root_dir_cell,val_csv,radius,dmin,step,random_seed)
test_dataset = CIFData(root_dir,root_dir_pos,root_dir_cell,test_csv,radius,dmin,step,random_seed)
collate_fn = collate_pool
train_loader = get_data_loader(train_dataset,collate_fn,batch_size,num_workers,pin_memory,False)
val_loader = get_data_loader(val_dataset,collate_fn,batch_size,num_workers,pin_memory,True)
test_loader= get_data_loader(test_dataset,collate_fn,batch_size,num_workers,pin_memory,True)
print('# of trainset: ',len(train_loader.dataset))
print('# of valset: ',len(val_loader.dataset))
print('# of testset: ',len(test_loader.dataset))
sample_data_list = [train_dataset[i] for i in sample(range(len(train_dataset)), 500)]
_, sample_target_cell,sample_target_pos, _ = collate_pool(sample_data_list)
normalizer = Normalizer(sample_target_cell)
#build model
structures, _,_,_,_ = train_dataset[0]
orig_atom_fea_len = structures[0].shape[-1] + 3+9
nbr_fea_len = structures[1].shape[-1]
n_feature=h_fea_len_gcn
model = SemiFullGN(orig_atom_fea_len,nbr_fea_len,atom_fea_len,n_conv,h_fea_len,n_h,n_feature)
model.cuda()
netG_A2B = Generator(4,4,4).cuda()
netG_A2B.load_state_dict(torch.load(model_folder+'/'+'best_G.pth'))
netG_A2B.eval()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(),lr,weight_decay=weight_decay)
scheduler = ExponentialLR(optimizer, gamma=lr_decay_rate)
t0 = time.time()
for epoch in range(start_epoch,epochs):
train(train_loader,model,gcn,netG_A2B,criterion,optimizer,epoch,normalizer,gdf)
mae_error = validate(val_loader,model,gcn,netG_A2B,criterion,normalizer)
scheduler.step()
is_best = mae_error < best_mae_error
best_mae_error = min(mae_error, best_mae_error)
save_checkpoint({'epoch': epoch,'state_dict': model.state_dict(),'best_mae_error': best_mae_error,
'optimizer': optimizer.state_dict(),'normalizer': normalizer.state_dict(),'model_args':model_args},is_best,chk_name,best_name)
t1 = time.time()
print('--------Training time in sec-------------')
print(t1-t0)
print('---------Best Model on Validation Set---------------')
best_checkpoint = torch.load(best_name)
print(best_checkpoint['best_mae_error'].cpu().numpy())
print('---------Evaluate Model on Test Set---------------')
model.load_state_dict(best_checkpoint['state_dict'])
validate(test_loader,model,gcn,netG_A2B,criterion,normalizer,test=True)
def train(train_loader, model, gcn, generator, criterion, optimizer, epoch, normalizer,gdf):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
mae_errors = AverageMeter()
#switch to train model
model.train()
end = time.time()
for i, (input,target_cell,target_pos,cif_ids) in enumerate(train_loader):
#input1 = input[1]
#input6 = input[6]
#noise = torch.Tensor(5.0e-4*np.random.normal(size=input6.shape))
#input6 += noise
#print(input6[0])
#input6 = np.array(input6)
#input1_noise = torch.Tensor(gdf.expand(input6))
data_time.update(time.time() - end)
#unrelaxed_feature = input[7].cuda()
with torch.no_grad():
input_var = (Variable(input[0].cuda()),
Variable(input[1].cuda()),
input[2].cuda(),
input[3].cuda(),
input[4].cuda(),
input[5].cuda())
unrelaxed_feature = gcn.Encoding(*input_var)
unrelaxed_feature = Variable(unrelaxed_feature)
h_fea_len = unrelaxed_feature.shape[-1]
feature_length = int(h_fea_len**0.5)
feature_delta = generator(unrelaxed_feature.reshape(-1,1,feature_length,feature_length)).reshape(-1,h_fea_len)
translated_feature = unrelaxed_feature - feature_delta
#print(input[0].shape, input[7].shape, input[8].shape, input[9].shape, input[9][:,:9].shape)
atoms_fea = torch.cat((input[0],input[7],input[8]),dim=-1) #input[7]:pos, input[8]:cell_atoms, input[9]:cell_crys
input_var2 = (Variable(atoms_fea.cuda()),
Variable(input[1].cuda()),
input[2].cuda(),
input[3].cuda(),
input[4].cuda(),
input[5].cuda(),
unrelaxed_feature,
translated_feature,
input[9][:,:9].cuda(),
feature_delta) ; target = target_cell
#compute output
output,_ = model(*input_var2) ; target_var = Variable(target).cuda() #;print(cif_ids[0],input[9][0])
loss = criterion(output, target_var) ; mae_error = mae(output.data.cpu(), target)
#measure accuracy
# mae_error = mae(normalizer.denorm(output.data.cpu()), target)
losses.update(loss.item(), target.size(0))
mae_errors.update(mae_error, target.size(0))
#backward operation
optimizer.zero_grad()
loss.backward()
optimizer.step()
#measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'MAE {mae_errors.val:.3f} ({mae_errors.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, mae_errors=mae_errors))
def validate(val_loader,model,gcn,generator,criterion,normalizer,test=False,save_name='test.csv'):
batch_time = AverageMeter()
losses = AverageMeter()
mae_errors = AverageMeter()
#switch to evaluate mode
model.eval()
end = time.time()
for i, (input,target_cell,target_pos,cif_ids) in enumerate(val_loader):
with torch.no_grad():
input_var = (Variable(input[0].cuda()),
Variable(input[1].cuda()),
input[2].cuda(),
input[3].cuda(),
input[4].cuda(),
input[5].cuda())
unrelaxed_feature = gcn.Encoding(*input_var)
unrelaxed_feature = Variable(unrelaxed_feature,volatile=True)
h_fea_len = unrelaxed_feature.shape[-1]
feature_length = int(h_fea_len**0.5)
feature_delta = generator(unrelaxed_feature.reshape(-1,1,feature_length,feature_length)).reshape(-1,h_fea_len)
translated_feature = unrelaxed_feature - feature_delta
atoms_fea = torch.cat((input[0],input[7],input[8]),dim=-1) #input[7]:pos, input[8]:cell_atoms, input[9]:cell_crys
input_var2 = (Variable(atoms_fea.cuda()),
Variable(input[1].cuda()),
input[2].cuda(),
input[3].cuda(),
input[4].cuda(),
input[5].cuda(),
unrelaxed_feature,
translated_feature,
input[9][:,:9].cuda(),
feature_delta) ; target = target_cell
target = target_cell
target_var = Variable(target.cuda(), volatile=True)
#compute output
output,_ = model(*input_var2)
loss = criterion(output, target_var) ; mae_error = mae(output.data.cpu(),target)
#measure accuracy and record loss
# mae_error = mae(normalizer.denorm(output.data.cpu()), target)
losses.update(loss.item(), target.size(0))
mae_errors.update(mae_error, target.size(0))
#measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'MAE {mae_errors.val:.3f} ({mae_errors.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
mae_errors=mae_errors))
star_label = '*'
print(' {star} MAE {mae_errors.avg:.3f}'.format(star=star_label,mae_errors=mae_errors)) ; print(output[0].reshape(3,3)) ; print(target[0].reshape(3,3))
return mae_errors.avg
class Normalizer(object):
def __init__(self, tensor):
self.mean = torch.mean(tensor)
self.std = torch.std(tensor)
def norm(self, tensor):
return (tensor - self.mean) / self.std
def denorm(self, normed_tensor):
return normed_tensor * self.std + self.mean
def state_dict(self):
return {'mean': self.mean,'std': self.std}
def load_state_dict(self, state_dict):
self.mean = state_dict['mean']
self.std = state_dict['std']
def mae(prediction, target):
return torch.mean(torch.abs(target - prediction))
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self,val,n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def save_checkpoint(state,is_best,chk_name,best_name):
torch.save(state, chk_name)
if is_best:
shutil.copyfile(chk_name,best_name)
if __name__ == '__main__':
main()