-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdropout_sampling.py
200 lines (164 loc) · 5.39 KB
/
dropout_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import argparse
import sys
import os
import shutil
import json
import time
import warnings
from random import sample
from tqdm import tqdm
import numpy as np
from sklearn import metrics
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.optim.lr_scheduler import ExponentialLR
from cgcnn.cgcnn_hd import CrystalGraphConvNet
from cgcnn.data import collate_pool, get_train_val_test_loader, CIFData
def main():
#taken from sys.argv
resume = True
resume_path = sys.argv[1]
#var. for dataset loader
root_dir = '/your/data/path/'
max_num_nbr = 8
radius = 4
dmin = 0
step = 0.2
random_seed = 1234
batch_size = 64
N_tot = len(open(root_dir+'/id_prop.csv').readlines())
N_tr = int(N_tot*0.8)
N_val = int(N_tot*0.1)
N_test = N_tot - N_tr - N_val
# N_test = N_tot
train_idx = list(range(N_tr))
val_idx = list(range(N_tr,N_tr+N_val))
test_idx = list(range(N_tot))
num_workers = 0
pin_memory = False
return_test = True
#var for model
atom_fea_len = 90
h_fea_len = 2*atom_fea_len
n_conv = 5
n_h = 2
lr_decay_rate = 0.99
lr = 0.001
weight_decay = 0.0
model_args = {'radius':radius,'dmin':dmin,'step':step,'batch_size':batch_size,
'random_seed':random_seed,'N_tr':N_tr,'N_val':N_val,'N_test':N_test,
'atom_fea_len':atom_fea_len,'h_fea_len':h_fea_len,
'n_conv':n_conv,'n_h':n_h,'lr':lr,'lr_decay_rate':lr_decay_rate,'weight_decay':weight_decay}
#var for training
best_mae_error = 1e10
start_epoch = 0
epochs = 1000
#setup
dataset = CIFData(root_dir,max_num_nbr,radius,dmin,step,random_seed)
collate_fn = collate_pool
train_loader, val_loader, test_loader = get_train_val_test_loader(dataset,collate_fn,batch_size,
train_idx,val_idx,test_idx,num_workers,pin_memory,return_test)
sample_data_list = [dataset[i] for i in sample(range(len(dataset)), 1)]
_, sample_target, _ = collate_pool(sample_data_list)
normalizer = Normalizer(sample_target)
#build model
structures, _, _ = dataset[0]
orig_atom_fea_len = structures[0].shape[-1]
nbr_fea_len = structures[1].shape[-1]
model = CrystalGraphConvNet(orig_atom_fea_len,nbr_fea_len,atom_fea_len,n_conv,h_fea_len,n_h)
model.cuda()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(),lr,weight_decay=weight_decay)
scheduler = ExponentialLR(optimizer, gamma=lr_decay_rate)
# optionally resume from a checkpoint
if resume:
print("=> loading checkpoint '{}'".format(resume_path))
checkpoint = torch.load(resume_path)
start_epoch = checkpoint['epoch']
best_mae_error = checkpoint['best_mae_error']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
normalizer.load_state_dict(checkpoint['normalizer'])
print("=> loaded checkpoint '{}' (epoch {})".format(resume_path, checkpoint['epoch']))
print('---------Evaluate Model on Test Set---------------')
save_name = 'dropout_test.csv'
validate(test_loader, model, criterion, normalizer, test=True, save_name=save_name)
def validate(val_loader,model,criterion,normalizer,test=False,save_name='test.csv'):
batch_time = AverageMeter()
losses = AverageMeter()
mae_errors = AverageMeter()
if test:
test_targets = []
test_preds = []
test_stds = []
test_cif_ids = []
#switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target, batch_cif_ids) in tqdm(enumerate(val_loader)):
input_var = (Variable(input[0].cuda(async=True), volatile=True),
Variable(input[1].cuda(async=True), volatile=True),
input[2].cuda(async=True),
[crys_idx.cuda(async=True) for crys_idx in input[3]])
target_normed = normalizer.norm(target)
target_var = Variable(target_normed.cuda(async=True),volatile=True)
#compute output
output = model.sampling(*input_var)
#measure accuracy and record loss
if test:
test_pred_ = normalizer.denorm(output.data.cpu())
test_pred = torch.mean(test_pred_,1)
test_std = torch.std(test_pred_,1)
test_target = target
test_preds += test_pred.view(-1).tolist()
test_targets += test_target.view(-1).tolist()
test_stds += test_std.view(-1).tolist()
test_cif_ids += batch_cif_ids
#measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if test:
star_label = '**'
import csv
with open(save_name, 'w') as f:
writer = csv.writer(f)
for cif_id, target, pred, std in zip(test_cif_ids,test_targets,test_preds,test_stds):
writer.writerow((cif_id, target, pred, std))
else:
star_label = '*'
class Normalizer(object):
def __init__(self, tensor):
self.mean = torch.mean(tensor)
self.std = torch.std(tensor)
def norm(self, tensor):
return (tensor - self.mean) / self.std
def denorm(self, normed_tensor):
return normed_tensor * self.std + self.mean
def state_dict(self):
return {'mean': self.mean,'std': self.std}
def load_state_dict(self, state_dict):
self.mean = state_dict['mean']
self.std = state_dict['std']
def mae(prediction, target):
return torch.mean(torch.abs(target - prediction))
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self,val,n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def save_checkpoint(state,is_best,chk_name,best_name):
torch.save(state, chk_name)
if is_best:
shutil.copyfile(chk_name,best_name)
if __name__ == '__main__':
main()