-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtest.py
296 lines (227 loc) · 9.34 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# This file contains all testing functionality including
# dataset parsing and evaluation.
# Author: Stefan Kahl, 2018, Chemnitz University of Technology
import os
import json
import operator
import numpy as np
from sklearn.utils import shuffle
import config as cfg
from model import lasagne_net as birdnet
from model import lasagne_io as io
from utils import audio
from utils import image
from utils import batch_generator as bg
from utils import metrics
from utils import stats
from utils import log
################### DATASAT HANDLING ####################
def parseTestSet():
# Random Seed
random = cfg.getRandomState()
# Status
log.i('PARSING TEST SET...', new_line=False)
TEST = []
# List of test files
fnames = []
for path, dirs, files in os.walk(cfg.TESTSET_PATH):
if path.split(os.sep)[-1] in cfg.CLASSES:
scnt = 0
for f in files:
fnames.append(os.path.join(path, f))
scnt += 1
if scnt >= cfg.MAX_TEST_SAMPLES_PER_CLASS and cfg.MAX_TEST_SAMPLES_PER_CLASS > 0:
break
fnames = sorted(shuffle(fnames, random_state=random)[:cfg.MAX_TEST_FILES])
# Get ground truth from metadata
for f in fnames:
# Metadata path
m_path = os.path.join(cfg.METADATA_PATH, f.split(os.sep)[-1].split('.')[0] + '.json')
# Load JSON
with open(m_path) as jfile:
data = json.load(jfile)
# Get Species (+ background species)
# Only species present in the trained classes are relevant for the metric
# Still, we are adding anything we have right now and sort it out later
if cfg.TEST_WITH_BG_SPECIES:
bg = data['background']
else:
bg = []
species = [data['sci-name']] + bg
# Add data to test set
TEST.append((f, species))
# Status
log.i('DONE!')
log.i(('TEST FILES:', len(TEST)))
return TEST
####################### TESTING #########################
labels = []
mdata = {}
def applyMetadata(fname, p):
global labels
global mdata
if len(labels) == 0:
with open('labelset_latin', 'r') as lfile:
for line in lfile.readlines():
labels.append(line.replace('\r\n', '').replace('\n', ''))
if len(mdata) == 0:
with open('meta_prob.tsv', 'r') as mfile:
for line in mfile.readlines():
d = line.replace('\r\n', '').replace('\n', '').split('\t')
mdata[d[0].split(os.sep)[-1]] = d[1:]
probs = (np.array(mdata[fname], dtype='float32') + 1)
probs[probs >= 1.0] = 1.5
for i in range(len(p)):
if cfg.CLASSES[i] in labels:
p[i] *= probs[labels.index(cfg.CLASSES[i])]
return p
def predictionPooling(p):
#You can test different prediction pooling strategies here
if p.ndim == 2:
try:
# Median filtered pooling for monophonic recordings
row_median = np.median(p, axis=1, keepdims=True)
p[p < row_median * 1.5] = 0.0
p_pool = np.mean((p * 2) ** 2, axis=0)
p_pool -= p_pool.min()
if p_pool.max() > 1.0:
p_pool /= p_pool.max()
# Mean exponential pooling for monophonic recordings
#p_pool = np.mean((p * 2) ** 2, axis=0)
#p_pool[p_pool > 1.0] = 1.0
# Simple average pooling
#p_pool = np.mean(p, axis=0)
#p_pool = sigmoid(p_pool)
except:
p_pool = cfg.getRandomState().normal(0.0, 1.0, (p.shape[1]))
else:
p_pool = p
return p_pool
def getSpecBatches(split):
# Random Seed
random = cfg.getRandomState()
# Make predictions for every testfile
for t in split:
# Spec batch
spec_batch = []
# Get specs for file
for spec in audio.specsFromFile(t[0],
cfg.SAMPLE_RATE,
cfg.SPEC_LENGTH,
cfg.SPEC_OVERLAP,
cfg.SPEC_MINLEN,
shape=(cfg.IM_SIZE[1], cfg.IM_SIZE[0]),
fmin=cfg.SPEC_FMIN,
fmax=cfg.SPEC_FMAX,
spec_type=cfg.SPEC_TYPE):
# Resize spec
spec = image.resize(spec, cfg.IM_SIZE[0], cfg.IM_SIZE[1], mode=cfg.RESIZE_MODE)
# Normalize spec
spec = image.normalize(spec, cfg.ZERO_CENTERED_NORMALIZATION)
# Prepare as input
spec = image.prepare(spec)
# Add to batch
if len(spec_batch) > 0:
spec_batch = np.vstack((spec_batch, spec))
else:
spec_batch = spec
# Batch too large?
if spec_batch.shape[0] >= cfg.MAX_SPECS_PER_FILE:
break
# No specs?
if len(spec_batch) == 0:
spec = random.normal(0.0, 1.0, (cfg.IM_SIZE[1], cfg.IM_SIZE[0]))
spec_batch = image.prepare(spec)
# Shuffle spec batch
spec_batch = shuffle(spec_batch, random_state=random)
# yield batch, labels and filename
yield spec_batch[:cfg.MAX_SPECS_PER_FILE], t[1], t[0].split(os.sep)[-1]
def test(SNAPSHOTS):
# Do we have more than one snapshot?
if not isinstance(SNAPSHOTS, (list, tuple)):
SNAPSHOTS = [SNAPSHOTS]
# Load snapshots
test_functions = []
for s in SNAPSHOTS:
# Settings
NET = s['net']
cfg.CLASSES = s['classes']
cfg.IM_DIM = s['im_dim']
cfg.IM_SIZE = s['im_size']
# Compile test function
test_net = birdnet.test_function(NET, hasTargets=False, layer_index=-1)
test_functions.append(test_net)
# Parse Testset
TEST = parseTestSet()
# Status
log.i('START TESTING...')
stats.clearStats()
stats.tic('test_time')
# Make predictions
for spec_batch, labels, filename in bg.threadedGenerator(getSpecBatches(TEST)):
try:
# Status
stats.tic('pred_time')
# Prediction
prediction_batch = []
for test_func in test_functions:
if len(prediction_batch) == 0:
prediction_batch = test_func(spec_batch)
else:
prediction_batch += test_func(spec_batch)
prediction_batch /= len(test_functions)
# Eliminate the scores for 'Noise'
if 'Noise' in cfg.CLASSES:
prediction_batch[: , cfg.CLASSES.index('Noise')] = np.min(prediction_batch)
# Prediction pooling
p_pool = predictionPooling(prediction_batch)
# Get class labels
p_labels = {}
for i in range(p_pool.shape[0]):
p_labels[cfg.CLASSES[i]] = p_pool[i]
# Sort by score
p_sorted = sorted(p_labels.items(), key=operator.itemgetter(1), reverse=True)
# Calculate MLRAP (MRR for single labels)
targets = np.zeros(p_pool.shape[0], dtype='float32')
for label in labels:
if label in cfg.CLASSES:
targets[cfg.CLASSES.index(label)] = 1.0
lrap = metrics.lrap(np.expand_dims(p_pool, 0), np.expand_dims(targets, 0))
stats.setValue('lrap', lrap, mode='append')
# Show sample stats
log.i((filename), new_line=True)
log.i(('\tLABELS:', labels), new_line=True)
log.i(('\tTOP PREDICTION:', p_sorted[0][0], int(p_sorted[0][1] * 1000) / 10.0, '%'), new_line=True)
log.i(('\tLRAP:', int(lrap * 1000) / 1000.0), new_line=False)
log.i(('\tMLRAP:', int(np.mean(stats.getValue('lrap')) * 1000) / 1000.0), new_line=True)
# Save some stats
if p_sorted[0][0] == labels[0]:
stats.setValue('top1_correct', 1, 'add')
stats.setValue('top1_confidence', p_sorted[0][1], 'append')
else:
stats.setValue('top1_incorrect', 1, 'add')
stats.toc('pred_time')
stats.setValue('time_per_batch', stats.getValue('pred_time'), 'append')
except KeyboardInterrupt:
cfg.DO_BREAK = True
break
except:
log.e('ERROR WHILE TRAINING!')
continue
# Stats
stats.toc('test_time')
log.i(('TESTING DONE!', 'TIME:', stats.getValue('test_time'), 's'))
log.r(('FINAL MLRAP:', np.mean(stats.getValue('lrap'))))
log.r(('TOP 1 ACCURACY:', max(0, float(stats.getValue('top1_correct')) / (stats.getValue('top1_correct') + stats.getValue('top1_incorrect')))))
log.r(('TOP 1 MEAN CONFIDENCE:',max(0, np.mean(stats.getValue('top1_confidence')))))
log.r(('TIME PER BATCH:', int(np.mean(stats.getValue('time_per_batch')) * 1000), 'ms'))
return np.mean(stats.getValue('lrap')), int(np.mean(stats.getValue('time_per_file')) * 1000)
if __name__ == '__main__':
# Load trained models
if not isinstance(cfg.TEST_MODELS, (list, tuple)):
cfg.TEST_MODELS = [cfg.TEST_MODELS]
SNAPSHOTS = []
for test_model in cfg.TEST_MODELS:
SNAPSHOTS.append(io.loadModel(test_model))
# Test snapshots
MLRAP, TIME = test(SNAPSHOTS)