-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata.py
465 lines (383 loc) · 19.3 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import os
import cv2
import numpy as np
import torch
import torchvision
from PIL import Image
from fiery.utils.geometry import (
resize_and_crop_image,
update_intrinsics,
calculate_birds_eye_view_parameters,
convert_egopose_to_matrix_numpy,
pose_vec2mat,
mat2pose_vec,
invert_matrix_egopose_numpy,
)
from fiery.utils.instance import convert_instance_mask_to_center_and_offset_label
from fiery.utils.lyft_splits import TRAIN_LYFT_INDICES, VAL_LYFT_INDICES
from lyft_dataset_sdk.lyftdataset import LyftDataset
from nuscenes.nuscenes import NuScenes
from nuscenes.utils.data_classes import Box
from nuscenes.utils.splits import create_splits_scenes
from pyquaternion import Quaternion
class FuturePredictionDataset(torch.utils.data.Dataset):
def __init__(self, nusc, is_train, cfg):
self.nusc = nusc
self.is_train = is_train
self.cfg = cfg
self.is_lyft = isinstance(nusc, LyftDataset)
if self.is_lyft:
self.dataroot = self.nusc.data_path
else:
self.dataroot = self.nusc.dataroot
self.mode = 'train' if self.is_train else 'val'
self.sequence_length = cfg.TIME_RECEPTIVE_FIELD + cfg.N_FUTURE_FRAMES
self.scenes = self.get_scenes()
self.ixes = self.prepro()
self.indices = self.get_indices()
# Image resizing and cropping
self.augmentation_parameters = self.get_resizing_and_cropping_parameters()
# Normalising input images
self.normalise_image = torchvision.transforms.Compose(
[torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
# Bird's-eye view parameters
bev_resolution, bev_start_position, bev_dimension = calculate_birds_eye_view_parameters(
cfg.LIFT.X_BOUND, cfg.LIFT.Y_BOUND, cfg.LIFT.Z_BOUND
)
self.bev_resolution, self.bev_start_position, self.bev_dimension = (
bev_resolution.numpy(), bev_start_position.numpy(), bev_dimension.numpy()
)
# Spatial extent in bird's-eye view, in meters
self.spatial_extent = (self.cfg.LIFT.X_BOUND[1], self.cfg.LIFT.Y_BOUND[1])
def get_scenes(self):
if self.is_lyft:
scenes = [row['name'] for row in self.nusc.scene]
# Split in train/val
indices = TRAIN_LYFT_INDICES if self.is_train else VAL_LYFT_INDICES
scenes = [scenes[i] for i in indices]
else:
# filter by scene split
split = {
'v1.0-trainval': {True: 'train', False: 'val'},
'v1.0-mini': {True: 'mini_train', False: 'mini_val'},
}[self.nusc.version][self.is_train]
scenes = create_splits_scenes()[split]
return scenes
def prepro(self):
samples = [samp for samp in self.nusc.sample]
# remove samples that aren't in this split
samples = [samp for samp in samples if self.nusc.get('scene', samp['scene_token'])['name'] in self.scenes]
# sort by scene, timestamp (only to make chronological viz easier)
samples.sort(key=lambda x: (x['scene_token'], x['timestamp']))
return samples
def get_indices(self):
indices = []
for index in range(len(self.ixes)):
is_valid_data = True
previous_rec = None
current_indices = []
for t in range(self.sequence_length):
index_t = index + t
# Going over the dataset size limit.
if index_t >= len(self.ixes):
is_valid_data = False
break
rec = self.ixes[index_t]
# Check if scene is the same
if (previous_rec is not None) and (rec['scene_token'] != previous_rec['scene_token']):
is_valid_data = False
break
current_indices.append(index_t)
previous_rec = rec
if is_valid_data:
indices.append(current_indices)
return np.asarray(indices)
def get_resizing_and_cropping_parameters(self):
original_height, original_width = self.cfg.IMAGE.ORIGINAL_HEIGHT, self.cfg.IMAGE.ORIGINAL_WIDTH
final_height, final_width = self.cfg.IMAGE.FINAL_DIM
resize_scale = self.cfg.IMAGE.RESIZE_SCALE
resize_dims = (int(original_width * resize_scale), int(original_height * resize_scale))
resized_width, resized_height = resize_dims
crop_h = self.cfg.IMAGE.TOP_CROP
crop_w = int(max(0, (resized_width - final_width) / 2))
# Left, top, right, bottom crops.
crop = (crop_w, crop_h, crop_w + final_width, crop_h + final_height)
if resized_width != final_width:
print('Zero padding left and right parts of the image.')
if crop_h + final_height != resized_height:
print('Zero padding bottom part of the image.')
return {
'scale_width': resize_scale,
'scale_height': resize_scale,
'resize_dims': resize_dims,
'crop': crop,
}
def get_input_data(self, rec):
"""
Parameters
----------
rec: nuscenes identifier for a given timestamp
Returns
-------
images: torch.Tensor<float> (N, 3, H, W)
intrinsics: torch.Tensor<float> (3, 3)
extrinsics: torch.Tensor(N, 4, 4)
"""
images = []
intrinsics = []
extrinsics = []
cameras = self.cfg.IMAGE.NAMES
# The extrinsics we want are from the camera sensor to "flat egopose" as defined
# https://github.com/nutonomy/nuscenes-devkit/blob/9b492f76df22943daf1dc991358d3d606314af27/python-sdk/nuscenes/nuscenes.py#L279
# which corresponds to the position of the lidar.
# This is because the labels are generated by projecting the 3D bounding box in this lidar's reference frame.
# From lidar egopose to world.
lidar_sample = self.nusc.get('sample_data', rec['data']['LIDAR_TOP'])
lidar_pose = self.nusc.get('ego_pose', lidar_sample['ego_pose_token'])
yaw = Quaternion(lidar_pose['rotation']).yaw_pitch_roll[0]
lidar_rotation = Quaternion(scalar=np.cos(yaw / 2), vector=[0, 0, np.sin(yaw / 2)])
lidar_translation = np.array(lidar_pose['translation'])[:, None]
lidar_to_world = np.vstack([
np.hstack((lidar_rotation.rotation_matrix, lidar_translation)),
np.array([0, 0, 0, 1])
])
for cam in cameras:
camera_sample = self.nusc.get('sample_data', rec['data'][cam])
# Transformation from world to egopose
car_egopose = self.nusc.get('ego_pose', camera_sample['ego_pose_token'])
egopose_rotation = Quaternion(car_egopose['rotation']).inverse
egopose_translation = -np.array(car_egopose['translation'])[:, None]
world_to_car_egopose = np.vstack([
np.hstack((egopose_rotation.rotation_matrix, egopose_rotation.rotation_matrix @ egopose_translation)),
np.array([0, 0, 0, 1])
])
# From egopose to sensor
sensor_sample = self.nusc.get('calibrated_sensor', camera_sample['calibrated_sensor_token'])
intrinsic = torch.Tensor(sensor_sample['camera_intrinsic'])
sensor_rotation = Quaternion(sensor_sample['rotation'])
sensor_translation = np.array(sensor_sample['translation'])[:, None]
car_egopose_to_sensor = np.vstack([
np.hstack((sensor_rotation.rotation_matrix, sensor_translation)),
np.array([0, 0, 0, 1])
])
car_egopose_to_sensor = np.linalg.inv(car_egopose_to_sensor)
# Combine all the transformation.
# From sensor to lidar.
lidar_to_sensor = car_egopose_to_sensor @ world_to_car_egopose @ lidar_to_world
sensor_to_lidar = torch.from_numpy(np.linalg.inv(lidar_to_sensor)).float()
# Load image
image_filename = os.path.join(self.dataroot, camera_sample['filename'])
img = Image.open(image_filename)
# Resize and crop
img = resize_and_crop_image(
img, resize_dims=self.augmentation_parameters['resize_dims'], crop=self.augmentation_parameters['crop']
)
# Normalise image
normalised_img = self.normalise_image(img)
# Combine resize/cropping in the intrinsics
top_crop = self.augmentation_parameters['crop'][1]
left_crop = self.augmentation_parameters['crop'][0]
intrinsic = update_intrinsics(
intrinsic, top_crop, left_crop,
scale_width=self.augmentation_parameters['scale_width'],
scale_height=self.augmentation_parameters['scale_height']
)
images.append(normalised_img.unsqueeze(0).unsqueeze(0))
intrinsics.append(intrinsic.unsqueeze(0).unsqueeze(0))
extrinsics.append(sensor_to_lidar.unsqueeze(0).unsqueeze(0))
images, intrinsics, extrinsics = (torch.cat(images, dim=1),
torch.cat(intrinsics, dim=1),
torch.cat(extrinsics, dim=1)
)
return images, intrinsics, extrinsics
def _get_top_lidar_pose(self, rec):
egopose = self.nusc.get('ego_pose', self.nusc.get('sample_data', rec['data']['LIDAR_TOP'])['ego_pose_token'])
trans = -np.array(egopose['translation'])
yaw = Quaternion(egopose['rotation']).yaw_pitch_roll[0]
rot = Quaternion(scalar=np.cos(yaw / 2), vector=[0, 0, np.sin(yaw / 2)]).inverse
return trans, rot
def get_birds_eye_view_label(self, rec, instance_map):
translation, rotation = self._get_top_lidar_pose(rec)
segmentation = np.zeros((self.bev_dimension[0], self.bev_dimension[1]))
# Background is ID 0
instance = np.zeros((self.bev_dimension[0], self.bev_dimension[1]))
z_position = np.zeros((self.bev_dimension[0], self.bev_dimension[1]))
attribute_label = np.zeros((self.bev_dimension[0], self.bev_dimension[1]))
for annotation_token in rec['anns']:
# Filter out all non vehicle instances
annotation = self.nusc.get('sample_annotation', annotation_token)
if not self.is_lyft:
# NuScenes filter
if 'vehicle' not in annotation['category_name']:
continue
if self.cfg.DATASET.FILTER_INVISIBLE_VEHICLES and int(annotation['visibility_token']) == 1:
continue
else:
# Lyft filter
if annotation['category_name'] not in ['bus', 'car', 'construction_vehicle', 'trailer', 'truck']:
continue
if annotation['instance_token'] not in instance_map:
instance_map[annotation['instance_token']] = len(instance_map) + 1
instance_id = instance_map[annotation['instance_token']]
if not self.is_lyft:
instance_attribute = int(annotation['visibility_token'])
else:
instance_attribute = 0
poly_region, z = self._get_poly_region_in_image(annotation, translation, rotation)
cv2.fillPoly(instance, [poly_region], instance_id)
cv2.fillPoly(segmentation, [poly_region], 1.0)
cv2.fillPoly(z_position, [poly_region], z)
cv2.fillPoly(attribute_label, [poly_region], instance_attribute)
return segmentation, instance, z_position, instance_map, attribute_label
def _get_poly_region_in_image(self, instance_annotation, ego_translation, ego_rotation):
box = Box(
instance_annotation['translation'], instance_annotation['size'], Quaternion(instance_annotation['rotation'])
)
box.translate(ego_translation)
box.rotate(ego_rotation)
pts = box.bottom_corners()[:2].T
pts = np.round(
(pts - self.bev_start_position[:2] + self.bev_resolution[:2] / 2.0) / self.bev_resolution[:2]).astype(
np.int32)
pts[:, [1, 0]] = pts[:, [0, 1]]
z = box.bottom_corners()[2, 0]
return pts, z
def get_label(self, rec, instance_map):
segmentation_np, instance_np, z_position_np, instance_map, attribute_label_np = \
self.get_birds_eye_view_label(rec, instance_map)
segmentation = torch.from_numpy(segmentation_np).long().unsqueeze(0).unsqueeze(0)
instance = torch.from_numpy(instance_np).long().unsqueeze(0)
z_position = torch.from_numpy(z_position_np).float().unsqueeze(0).unsqueeze(0)
attribute_label = torch.from_numpy(attribute_label_np).long().unsqueeze(0).unsqueeze(0)
return segmentation, instance, z_position, instance_map, attribute_label
def get_future_egomotion(self, rec, index):
rec_t0 = rec
# Identity
future_egomotion = np.eye(4, dtype=np.float32)
if index < len(self.ixes) - 1:
rec_t1 = self.ixes[index + 1]
if rec_t0['scene_token'] == rec_t1['scene_token']:
egopose_t0 = self.nusc.get(
'ego_pose', self.nusc.get('sample_data', rec_t0['data']['LIDAR_TOP'])['ego_pose_token']
)
egopose_t1 = self.nusc.get(
'ego_pose', self.nusc.get('sample_data', rec_t1['data']['LIDAR_TOP'])['ego_pose_token']
)
egopose_t0 = convert_egopose_to_matrix_numpy(egopose_t0)
egopose_t1 = convert_egopose_to_matrix_numpy(egopose_t1)
future_egomotion = invert_matrix_egopose_numpy(egopose_t1).dot(egopose_t0)
future_egomotion[3, :3] = 0.0
future_egomotion[3, 3] = 1.0
future_egomotion = torch.Tensor(future_egomotion).float()
# Convert to 6DoF vector
future_egomotion = mat2pose_vec(future_egomotion)
return future_egomotion.unsqueeze(0)
def __len__(self):
return len(self.indices)
def __getitem__(self, index):
"""
Returns
-------
data: dict with the following keys:
image: torch.Tensor<float> (T, N, 3, H, W)
normalised cameras images with T the sequence length, and N the number of cameras.
intrinsics: torch.Tensor<float> (T, N, 3, 3)
intrinsics containing resizing and cropping parameters.
extrinsics: torch.Tensor<float> (T, N, 4, 4)
6 DoF pose from world coordinates to camera coordinates.
segmentation: torch.Tensor<int64> (T, 1, H_bev, W_bev)
(H_bev, W_bev) are the pixel dimensions in bird's-eye view.
instance: torch.Tensor<int64> (T, 1, H_bev, W_bev)
centerness: torch.Tensor<float> (T, 1, H_bev, W_bev)
offset: torch.Tensor<float> (T, 2, H_bev, W_bev)
flow: torch.Tensor<float> (T, 2, H_bev, W_bev)
future_egomotion: torch.Tensor<float> (T, 6)
6 DoF egomotion t -> t+1
sample_token: List<str> (T,)
'z_position': list_z_position,
'attribute': list_attribute_label,
"""
data = {}
keys = [
'image', 'intrinsics', 'extrinsics',
'segmentation', 'instance', 'centerness', 'offset', 'flow', 'future_egomotion',
'sample_token',
'z_position', 'attribute'
]
for key in keys:
data[key] = []
instance_map = {}
# Loop over all the frames in the sequence.
for index_t in self.indices[index]:
rec = self.ixes[index_t]
images, intrinsics, extrinsics = self.get_input_data(rec)
segmentation, instance, z_position, instance_map, attribute_label = self.get_label(rec, instance_map)
future_egomotion = self.get_future_egomotion(rec, index_t)
data['image'].append(images)
data['intrinsics'].append(intrinsics)
data['extrinsics'].append(extrinsics)
data['segmentation'].append(segmentation)
data['instance'].append(instance)
data['future_egomotion'].append(future_egomotion)
data['sample_token'].append(rec['token'])
data['z_position'].append(z_position)
data['attribute'].append(attribute_label)
for key, value in data.items():
if key in ['sample_token', 'centerness', 'offset', 'flow']:
continue
data[key] = torch.cat(value, dim=0)
# If lyft need to subsample, and update future_egomotions
if self.cfg.MODEL.SUBSAMPLE:
for key, value in data.items():
if key in ['future_egomotion', 'sample_token', 'centerness', 'offset', 'flow']:
continue
data[key] = data[key][::2].clone()
data['sample_token'] = data['sample_token'][::2]
# Update future egomotions
future_egomotions_matrix = pose_vec2mat(data['future_egomotion'])
future_egomotion_accum = torch.zeros_like(future_egomotions_matrix)
future_egomotion_accum[:-1] = future_egomotions_matrix[:-1] @ future_egomotions_matrix[1:]
future_egomotion_accum = mat2pose_vec(future_egomotion_accum)
data['future_egomotion'] = future_egomotion_accum[::2].clone()
instance_centerness, instance_offset, instance_flow = convert_instance_mask_to_center_and_offset_label(
data['instance'], data['future_egomotion'],
num_instances=len(instance_map), ignore_index=self.cfg.DATASET.IGNORE_INDEX, subtract_egomotion=True,
spatial_extent=self.spatial_extent,
)
data['centerness'] = instance_centerness
data['offset'] = instance_offset
data['flow'] = instance_flow
return data
def prepare_dataloaders(cfg, return_dataset=False):
version = cfg.DATASET.VERSION
train_on_training_data = True
if cfg.DATASET.NAME == 'nuscenes':
# 28130 train and 6019 val
dataroot = cfg.DATASET.DATAROOT
print(dataroot)
nusc = NuScenes(version='v1.0-{}'.format(cfg.DATASET.VERSION), dataroot=dataroot, verbose=False)
elif cfg.DATASET.NAME == 'lyft':
# train contains 22680 samples
# we split in 16506 6174
dataroot = os.path.join(cfg.DATASET.DATAROOT, 'trainval')
nusc = LyftDataset(data_path=dataroot,
json_path=os.path.join(dataroot, 'train_data'),
verbose=True)
traindata = FuturePredictionDataset(nusc, train_on_training_data, cfg)
valdata = FuturePredictionDataset(nusc, False, cfg)
if cfg.DATASET.VERSION == 'mini':
traindata.indices = traindata.indices[:10]
valdata.indices = valdata.indices[:10]
nworkers = cfg.N_WORKERS
trainloader = torch.utils.data.DataLoader(
traindata, batch_size=cfg.BATCHSIZE, shuffle=True, num_workers=nworkers, pin_memory=True, drop_last=True
)
valloader = torch.utils.data.DataLoader(
valdata, batch_size=cfg.BATCHSIZE, shuffle=False, num_workers=nworkers, pin_memory=True, drop_last=False)
if return_dataset:
return trainloader, valloader, traindata, valdata
else:
return trainloader, valloader