-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_logistic_regression.py
363 lines (318 loc) · 12.1 KB
/
train_logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import argparse
import os
import numpy as np
import torch
import matplotlib.pyplot as plt
from src.data.heart_attack import HeartAttackDataset
from src.data.heart_disease import HeartDiseaseDataset
from src.data.ionosphere import IonosphereDataset
from src.data.loan import LoanDataset
from src.data.sonar import SonarDataset
from src.distribution.vi import MeanFieldVariationalDistribution
from src.logistic_regression.model import (
BayesianLogisticRegressionLogJoint,
LogisticRegressionAISModel,
)
from src.logistic_regression.sampling import HMCSampler
from src.sampling.betas import LearnableBetas
from src.sampling.dais import IdentityDAIS
from src.sampling.deltas import LearnableDeltas
from src.sampling.ld_momentum import LangevinMomentumDiffusionDAISZhang
def get_arguments():
parser = argparse.ArgumentParser(description="Logistic Regression Experiment")
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--n_particles", type=int, default=16)
parser.add_argument("--n_transitions", type=int, default=16)
parser.add_argument("--scaled_M", action="store_true")
parser.add_argument("--mean_field", action="store_true")
parser.add_argument("--importance_weighted", action="store_true")
parser.add_argument("--do_not_apply_log_mean_exp_to_elbo", action="store_true")
parser.add_argument("--max_iterations", type=int, default=1000)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--lr", type=float, default=1e-2)
parser.add_argument("--dataset", type=str)
parser.add_argument("--data_path", type=str)
parser.add_argument("--path_to_save", type=str)
parser.add_argument("--hmc", action="store_true", help="Generate HMC samples")
parser.add_argument("--hmc_step_size", type=float, default=0.005)
parser.add_argument("--hmc_num_leapfrog_steps", type=int, default=100)
parser.add_argument("--hmc_num_samples", type=int, default=500)
parser.add_argument("--hmc_take_every_n_sample", type=int, default=10)
parser.add_argument("--hmc_burnin", type=int, default=500)
args = parser.parse_args()
return args
def get_accuracy(zs, x, y):
probs = torch.sigmoid(
-(zs[..., :-1] * x.unsqueeze(1) + zs[..., -1].unsqueeze(-1)).sum(-1)
)
return ((probs > 0.5).int() == y.unsqueeze(-1)).int().float().mean()
def sample(args):
train_data_loader, test_data_loader = get_data_loaders(args)
p = BayesianLogisticRegressionLogJoint(
torch.zeros(args.zdim - 1), torch.eye(args.zdim - 1)
)
# sample
hmc_sampler = HMCSampler(args, p)
for x, y in train_data_loader:
samples, hamiltonians, alphas, accepts = hmc_sampler.sample((args.zdim,), x, y)
# test accuracies
test_accuracies = list()
with torch.no_grad():
for sample in samples:
for x, y in test_data_loader:
test_accuracy = get_accuracy(sample, x, y)
test_accuracies.append(test_accuracy.item())
# save
path_to_save = os.path.join(
args.path_to_save, "hmc", f"{args.dataset}"
)
os.makedirs(path_to_save, exist_ok=True)
filename_prefix = (
"hmc_samples_"
f"{args.hmc_step_size}_"
f"{args.hmc_num_leapfrog_steps}_"
f"{args.hmc_num_samples}_"
f"{args.hmc_take_every_n_sample}_"
f"{args.hmc_burnin}"
)
# figure
fig, ax = plt.subplots(3, 1, figsize=(1 * 5, 3 * 5))
ax[0].plot(hamiltonians)
ax[0].set_title("Hamiltonians")
ax[1].plot(np.minimum(alphas, 1.0))
ax[1].set_title("Alphas")
ax[2].plot(test_accuracies)
ax[2].set_title("Test accuracies")
fig.savefig(os.path.join(path_to_save, filename_prefix + ".png"))
plt.close(fig)
# samples
torch.save(
samples,
os.path.join(path_to_save, filename_prefix + "_samples.pt"),
)
torch.save(
alphas,
os.path.join(path_to_save, filename_prefix + "_alphas.pt"),
)
torch.save(
test_accuracies,
os.path.join(path_to_save, filename_prefix + "_test_accuracies.pt"),
)
torch.save(
hamiltonians,
os.path.join(path_to_save, filename_prefix + "_hamiltonians.pt"),
)
def get_data_loaders(args):
# dataset
if args.dataset == "ionosphere":
ionosphere_dataset = IonosphereDataset(args.data_path)
dataset_dim = 34
args.zdim = dataset_dim + 1
training_set_size = int(0.8 * len(ionosphere_dataset))
train_dataset, test_dataset = torch.utils.data.random_split(
ionosphere_dataset,
[training_set_size, len(ionosphere_dataset) - training_set_size],
generator=torch.Generator().manual_seed(0),
)
elif args.dataset == "sonar":
sonar_dataset = SonarDataset(args.data_path)
dataset_dim = 60
args.zdim = dataset_dim + 1
training_set_size = int(0.8 * len(sonar_dataset))
train_dataset, test_dataset = torch.utils.data.random_split(
sonar_dataset,
[training_set_size, len(sonar_dataset) - training_set_size],
generator=torch.Generator().manual_seed(0),
)
elif args.dataset == "heart-disease":
heart_disease_dataset = HeartDiseaseDataset(args.data_path)
dataset_dim = 15
args.zdim = dataset_dim + 1
training_set_size = int(0.8 * len(heart_disease_dataset))
train_dataset, test_dataset = torch.utils.data.random_split(
heart_disease_dataset,
[training_set_size, len(heart_disease_dataset) - training_set_size],
generator=torch.Generator().manual_seed(0),
)
elif args.dataset == "heart-attack":
heart_attack_dataset = HeartAttackDataset(args.data_path)
dataset_dim = 13
args.zdim = dataset_dim + 1
training_set_size = int(0.8 * len(heart_attack_dataset))
train_dataset, test_dataset = torch.utils.data.random_split(
heart_attack_dataset,
[training_set_size, len(heart_attack_dataset) - training_set_size],
generator=torch.Generator().manual_seed(0),
)
elif args.dataset == "loan":
loan_dataset = LoanDataset(args.data_path)
dataset_dim = 11
args.zdim = dataset_dim + 1
training_set_size = int(0.8 * len(loan_dataset))
train_dataset, test_dataset = torch.utils.data.random_split(
loan_dataset,
[training_set_size, len(loan_dataset) - training_set_size],
generator=torch.Generator().manual_seed(0),
)
else:
raise RuntimeError("Unknown dataset.")
# data loader
train_data_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=len(train_dataset), shuffle=True
)
test_data_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=len(test_dataset), shuffle=False
)
return train_data_loader, test_data_loader
def get_ais_model(args):
# target distribution
p = BayesianLogisticRegressionLogJoint(
torch.zeros(args.zdim - 1), torch.eye(args.zdim - 1)
)
# variational distribution
q = MeanFieldVariationalDistribution(
args.zdim, diagonal_covariance=1.0, random_initialization=False
)
# deltas
deltas = LearnableDeltas(args)
# betas
betas = LearnableBetas(steps=args.n_transitions)
# ais
ais = LangevinMomentumDiffusionDAISZhang if not args.mean_field else IdentityDAIS
# model
model = LogisticRegressionAISModel(
args=args,
log_joint=p,
log_variational=q,
ais=ais(args=args, log_joint=p, log_variational=q, deltas=deltas, betas=betas),
)
return model
def train_model(args, model, optimizer, train_data_loader, test_data_loader):
torch.manual_seed(args.seed)
losses = list()
initial_train_accuracies = list()
train_accuracies = list()
test_losses = list()
test_accuracies = list()
initial_test_accuracies = list()
with torch.autograd.set_detect_anomaly(False):
for iteration in range(args.max_iterations):
# training
for x, y in train_data_loader:
optimizer.zero_grad()
return_dict = model(x, y)
with torch.no_grad():
train_accuracy = get_accuracy(return_dict["last_z"], x, y)
initial_train_accuracy = get_accuracy(model.q.mean, x, y)
train_loss = -return_dict["elbo"].mean()
train_loss.backward()
optimizer.step()
# testing
for x, y in test_data_loader:
return_dict = model(x, y)
with torch.no_grad():
test_accuracy = get_accuracy(return_dict["last_z"], x, y)
initial_test_accurcy = get_accuracy(model.q.mean, x, y)
test_loss = -return_dict["elbo"].mean()
# logging
if iteration % 250 == 0:
losses.append(train_loss.item())
train_accuracies.append(train_accuracy)
initial_train_accuracies.append(initial_train_accuracy)
test_losses.append(test_loss.item())
test_accuracies.append(test_accuracy)
initial_test_accuracies.append(initial_test_accurcy)
print(
f"iteration: {iteration:.4f}\t"
f"train loss: {train_loss.item():.4f}\t"
f"test loss: {test_loss.item():.4f}\t"
f"train accuracy: {train_accuracy.item():.4f}\t"
f"test accuracy: {test_accuracy.item():.4f}\t"
f"initial train accuracy: {initial_train_accuracy.item():.4f}\t"
f"initial test accuracy: {initial_test_accurcy.item():.4f}\t"
)
return (
initial_test_accuracies,
initial_train_accuracies,
losses,
test_accuracies,
test_losses,
train_accuracies,
)
def main():
# arguments
args = get_arguments()
if args.hmc:
sample(args)
exit(0)
# data
train_data_loader, test_data_loader = get_data_loaders(args)
# model
model = get_ais_model(args)
optimizer = torch.optim.Adam(params=model.parameters(), lr=args.lr)
(
initial_test_accuracies,
initial_train_accuracies,
losses,
test_accuracies,
test_losses,
train_accuracies,
) = train_model(args, model, optimizer, train_data_loader, test_data_loader)
# save results
model_identifier = f"{args.dataset}_" + (
("mf" + ("_iw" if args.importance_weighted else ""))
if args.mean_field
else "dais"
)
path_to_save = os.path.join(
args.path_to_save,
f"{args.dataset}",
f"{args.n_particles}",
f"{args.n_transitions}",
)
# create directory if not exists
os.makedirs(path_to_save, exist_ok=True)
os.makedirs(os.path.join(path_to_save, "models"), exist_ok=True)
os.makedirs(os.path.join(path_to_save, "plots"), exist_ok=True)
# model parameters
torch.save(
model.state_dict(),
os.path.join(
path_to_save,
"models",
f"log_reg_"
f"{args.n_particles}_"
f"{args.n_transitions}_"
f"{model_identifier}.pt",
),
)
# figure summarizing run
fig, ax = plt.subplots(3, 1, figsize=(1 * 5, 2 * 5))
# losses
ax[0].plot(losses, label="train", color="C0")
ax[0].plot(test_losses, label="test", color="C1")
ax[0].legend()
ax[0].set_title("Losses")
# train accuracies
ax[1].plot(train_accuracies, label="final", color="C2")
ax[1].plot(initial_train_accuracies, label="initial", color="C3")
ax[1].legend()
ax[1].set_title("Train Accuracies")
# test accuracies
ax[2].plot(test_accuracies, label="final", color="C2")
ax[2].plot(initial_test_accuracies, label="initial", color="C3")
ax[2].legend()
ax[2].set_title("Test Accuracies")
fig.savefig(
os.path.join(
path_to_save,
"plots",
f"log_reg_"
f"{args.n_particles}_"
f"{args.n_transitions}_"
f"{model_identifier}.pdf",
),
)
plt.close(fig)
if __name__ == "__main__":
main()