-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_gp_regression.py
334 lines (307 loc) · 9.36 KB
/
train_gp_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import argparse
import os
import numpy as np
import torch
import torch.optim as optim
from src.distribution.vi import MeanFieldVariationalDistribution
from src.gp_regression.linalg import (
analytic_fobs_given_data,
get_analytic_joint,
gp_ground_truth,
rbf_1,
rbf_2,
)
from src.gp_regression.model import GPAISModel, GPJoint
from src.sampling.betas import LearnableBetas
from src.sampling.dais import IdentityDAIS
from src.sampling.deltas import LearnableDeltas
from src.sampling.ld_momentum import LangevinMomentumDiffusionDAISZhang
sqrt_3 = torch.sqrt(torch.tensor(3.0))
def get_arguments():
parser = argparse.ArgumentParser(description="GP Regression Experiment")
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--n_particles", type=int, default=16)
parser.add_argument("--n_transitions", type=int, default=16)
parser.add_argument("--scaled_M", action="store_true")
parser.add_argument("--mean_field", action="store_true")
parser.add_argument("--importance_weighted", action="store_true")
parser.add_argument("--do_not_apply_log_mean_exp_to_elbo", action="store_true")
parser.add_argument("--max_iterations", type=int, default=5_000)
parser.add_argument("--observation_sigma", type=float, default=0.25)
parser.add_argument("--n_observations", type=int, default=30)
parser.add_argument("--n_x", type=int, help="number of points in domain")
parser.add_argument("--kernel", type=str)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--lr", type=float, default=1e-2)
parser.add_argument("--path_to_save", type=str)
args = parser.parse_args()
return args
def unshuffle_mean_cov(mu_obs, mu_unobs, cov_obs, cov_unobs, index, inverse_index, n_x):
mu_plot = torch.zeros(n_x)
sigma_plot = torch.zeros(n_x)
for i in range(n_x):
if i in index:
pos_index = torch.argmax((index == i).int()).item()
mu_plot[i] = mu_obs[pos_index]
sigma_plot[i] = torch.sqrt(cov_obs[pos_index, pos_index])
else:
assert i in inverse_index
pos_inverse_index = torch.argmax((inverse_index == i).int()).item()
mu_plot[i] = mu_unobs[pos_inverse_index]
sigma_plot[i] = torch.sqrt(cov_unobs[pos_inverse_index, pos_inverse_index])
return mu_plot, sigma_plot
def get_model(args, x, L_obs, K_obs):
# variational distribution
q = MeanFieldVariationalDistribution(
dim=args.n_observations, diagonal_covariance=1.0, random_initialization=False
)
# target distribution
p = GPJoint(
prior_mean=torch.zeros(args.n_observations),
prior_cholesky_factor=L_obs,
prior_covariance=K_obs,
observations=x,
observation_scale=torch.tensor(args.observation_sigma),
)
# deltas
deltas = LearnableDeltas(args)
# betas
betas = LearnableBetas(steps=args.n_transitions)
# ais
ais = LangevinMomentumDiffusionDAISZhang if not args.mean_field else IdentityDAIS
# model
model = GPAISModel(
args=args,
log_joint=p,
log_variational=q,
ais=ais(args=args, log_joint=p, log_variational=q, deltas=deltas, betas=betas),
)
return model
def main():
# args
args = get_arguments()
# dimensionality of latent process
args.zdim = args.n_observations
# kernel
if args.kernel == "rbf2":
kernel = rbf_2
elif args.kernel == "rbf1":
kernel = rbf_1
else:
raise ValueError("Unknown kernel")
# process, observations and ground truth
(
t,
mu,
K,
L,
x_t,
x,
index,
inverse_index,
K_obs,
K_unobs,
K_obs_unobs,
K_unobs_obs,
L_obs,
mu_obs_plus,
cov_obs_plus,
c_alpha,
) = gp_ground_truth(kernel, args.n_x, args.n_observations, args.observation_sigma)
model = get_model(args, x, L_obs, K_obs)
# train
torch.manual_seed(args.seed)
optimizer = optim.Adam(params=model.parameters(), lr=args.lr)
max_iterations = args.max_iterations + 1
# figure
model_identifier = (
"mf" + ("_iw" if args.importance_weighted else "")
if args.mean_field
else "dais"
)
path_to_save = os.path.join(
args.path_to_save,
f"{args.n_x}",
f"{args.n_observations}",
f"{args.kernel}",
f"{args.n_particles}",
)
# create directory if not exists
os.makedirs(path_to_save, exist_ok=True)
os.makedirs(os.path.join(path_to_save, "models"), exist_ok=True)
mu_obs_plus, cov_obs_plus = analytic_fobs_given_data(
torch.zeros(args.n_observations), K_obs, args.observation_sigma, x
)
(
mu_obs_plus_analytic,
mu_unobs_plus_analytic,
cov_obs_plus_analytic,
cov_unobs_plus_analytic,
cov_obs_unobs_plus_analytic,
cov_unobs_obs_plus_analytic,
) = get_analytic_joint(
mu_obs_plus,
cov_obs_plus,
torch.zeros(args.n_observations),
torch.zeros(args.n_x - args.n_observations),
K_obs,
K_unobs,
K_obs_unobs,
K_unobs_obs,
)
mu_plot_analytic, sigma_plot_analytic = unshuffle_mean_cov(
mu_obs_plus_analytic,
mu_unobs_plus_analytic,
cov_obs_plus_analytic,
cov_unobs_plus_analytic,
index,
inverse_index,
args.n_x,
)
# training
for iteration in range(max_iterations):
optimizer.zero_grad()
return_dict = model()
loss = -return_dict["elbo"].mean()
loss.backward()
optimizer.step()
if iteration % 10 == 0:
print(f"iteration: {iteration}, loss: {loss.item()}")
save_results(
K_obs,
K_obs_unobs,
K_unobs,
K_unobs_obs,
args,
cov_obs_plus,
index,
inverse_index,
model,
model_identifier,
mu_obs_plus,
mu_obs_plus_analytic,
mu_plot_analytic,
mu_unobs_plus_analytic,
path_to_save,
sigma_plot_analytic,
t,
x,
x_t,
)
def save_results(
K_obs,
K_obs_unobs,
K_unobs,
K_unobs_obs,
args,
cov_obs_plus,
index,
inverse_index,
model,
model_identifier,
mu_obs_plus,
mu_obs_plus_analytic,
mu_plot_analytic,
mu_unobs_plus_analytic,
path_to_save,
sigma_plot_analytic,
t,
x,
x_t,
):
(
mu_obs_plus_learned,
mu_unobs_plus_learned,
cov_obs_plus_learned,
cov_unobs_plus_learned,
cov_obs_unobs_plus_learned,
cov_unobs_obs_plus_learned,
) = get_analytic_joint(
# learned posterior mean
model.q.mean.detach().cpu(),
# learned posterior covariance
torch.diag(model.q.log_diagonal.detach().exp().cpu()),
torch.zeros(args.n_observations),
torch.zeros(args.n_x - args.n_observations),
K_obs,
K_unobs,
K_obs_unobs,
K_unobs_obs,
)
mu_plot_learned, sigma_plot_learned = unshuffle_mean_cov(
mu_obs_plus_learned,
mu_unobs_plus_learned,
cov_obs_plus_learned,
cov_unobs_plus_learned,
index,
inverse_index,
args.n_x,
)
for arr, arr_name in zip(
[t, x_t, x, mu_plot_analytic, mu_plot_learned],
["t", "x_t", "x", "analytical_posterior_mean", "learned_posterior_mean"],
):
np.save(
os.path.join(
path_to_save,
"models",
f"gp_{args.kernel}_{args.zdim}_{args.n_observations}_"
f"{args.observation_sigma}_{args.n_particles}_"
f"{args.n_transitions}_{model_identifier}_{arr_name}.npy",
),
arr,
)
(
_,
_,
cov_obs_plus_optimal_learned,
cov_unobs_plus_optimal_learned,
_,
_,
) = get_analytic_joint(
# analytical posterior mean
mu_obs_plus,
# optimal posterior covariance without any off-diagonal covariances
torch.diag(torch.diag(cov_obs_plus)),
torch.zeros(args.n_observations),
torch.zeros(args.n_x - args.n_observations),
K_obs,
K_unobs,
K_obs_unobs,
K_unobs_obs,
)
_, sigma_plot_optimal_learned = unshuffle_mean_cov(
mu_obs_plus_analytic,
mu_unobs_plus_analytic,
cov_obs_plus_optimal_learned,
cov_unobs_plus_optimal_learned,
index,
inverse_index,
args.n_x,
)
for arr, arr_name in zip(
[sigma_plot_analytic, sigma_plot_learned, sigma_plot_optimal_learned],
["posterior_std", "learned_posterior_std", "diag_analytical_posterior_std"],
):
np.save(
os.path.join(
path_to_save,
"models",
f"gp_{args.kernel}_{args.zdim}_{args.n_observations}_"
f"{args.observation_sigma}_{args.n_particles}_"
f"{args.n_transitions}_{model_identifier}_{arr_name}.npy",
),
arr,
)
torch.save(
model.state_dict(),
os.path.join(
path_to_save,
"models",
f"gp_{args.kernel}_{args.zdim}_{args.n_observations}_"
f"{args.observation_sigma}_{args.n_particles}_"
f"{args.n_transitions}_{model_identifier}.pt",
),
)
if __name__ == "__main__":
main()