-
Notifications
You must be signed in to change notification settings - Fork 0
/
predicate_detection.py
147 lines (119 loc) · 6.49 KB
/
predicate_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from visual_relationship_dataset import *
import os
import scipy.io as sio
from PIL import Image
import copy
from refine_predictions import refine_equiv
np.set_printoptions(precision=2)
np.set_printoptions(threshold=np.inf)
cwd = os.getcwd()
# swith between GPU and CPU
config = tf.ConfigProto(device_count={'GPU': 1})
img_dir = cwd + '/data/sg_test_images'
# Load training data for prio statistics on the dataset
_, _, _, triples_of_train_data, _, _, _ = get_data("train", True)
# Computing positive and negative examples for predicates and types
idxs_of_positive_examples_of_predicates = {}
for predicate in selected_predicates:
idxs_of_positive_examples_of_predicates[predicate] = \
np.where(predicates[triples_of_train_data[:, -1]] == predicate)[0]
prior_stats = np.array([len(idxs_of_positive_examples_of_predicates[pred]) for pred in selected_predicates])
prior_freq = np.true_divide(prior_stats, np.sum(prior_stats))
image_path = sio.loadmat(cwd + '/Visual-Relationship-Detection-master/data/imagePath.mat')
gt = sio.loadmat(cwd + '/Visual-Relationship-Detection-master/evaluation/gt.mat')
gt_sub_bboxes = gt['gt_sub_bboxes']
gt_obj_bboxes = gt['gt_obj_bboxes']
gt_tuple_label = gt['gt_tuple_label']
for img_id in range(len(gt_sub_bboxes[0])):
if len(gt_sub_bboxes[0][img_id]) > 0:
assert np.all(gt_sub_bboxes[0][img_id][:, 0] < gt_sub_bboxes[0][img_id][:, 2])
assert np.all(gt_sub_bboxes[0][img_id][:, 1] < gt_sub_bboxes[0][img_id][:, 3])
assert np.all(gt_obj_bboxes[0][img_id][:, 0] < gt_obj_bboxes[0][img_id][:, 2])
assert np.all(gt_obj_bboxes[0][img_id][:, 1] < gt_obj_bboxes[0][img_id][:, 3])
features_detected_bb = []
obj_bboxes_ours = []
sub_bboxes_ours = []
obj_labels_ours = []
sub_labels_ours = []
semantic_feat_vect = np.zeros(len(types))
for pic_idx in range(gt_tuple_label.shape[1]):
gt_sub_bboxes[0, pic_idx] = gt_sub_bboxes[0, pic_idx].astype(np.float)
gt_obj_bboxes[0, pic_idx] = gt_obj_bboxes[0, pic_idx].astype(np.float)
features_per_image = np.empty((0, 2 * number_of_features + number_of_extra_features))
obj_bboxes_ours_per_image = np.array([]).reshape(0, 4)
sub_bboxes_ours_per_image = np.array([]).reshape(0, 4)
obj_label_per_image = np.array([])
sub_label_per_image = np.array([])
# normalize data
if len(gt_sub_bboxes[0, pic_idx]) > 0:
img = Image.open(os.path.join(img_dir, image_path['imagePath'][0, pic_idx][0]).replace('png', 'jpg'))
width, height = img.size
normalized_gt_sub_bboxes = copy.deepcopy(gt_sub_bboxes[0, pic_idx])
normalized_gt_sub_bboxes[:, -4] /= width
normalized_gt_sub_bboxes[:, -3] /= height
normalized_gt_sub_bboxes[:, -2] /= width
normalized_gt_sub_bboxes[:, -1] /= height
normalized_gt_obj_bboxes = copy.deepcopy(gt_obj_bboxes[0, pic_idx])
normalized_gt_obj_bboxes[:, -4] /= width
normalized_gt_obj_bboxes[:, -3] /= height
normalized_gt_obj_bboxes[:, -2] /= width
normalized_gt_obj_bboxes[:, -1] /= height
for bb_idx in range(len(gt_tuple_label[0, pic_idx])):
bb1 = normalized_gt_sub_bboxes[bb_idx]
bb2 = normalized_gt_obj_bboxes[bb_idx]
sub_label_per_image = np.append(sub_label_per_image, gt_tuple_label[0, pic_idx][bb_idx, 0])
obj_label_per_image = np.append(obj_label_per_image, gt_tuple_label[0, pic_idx][bb_idx, 2])
feat_vect_bb1 = np.hstack((semantic_feat_vect, bb1))
feat_vect_bb2 = np.hstack((semantic_feat_vect, bb2))
feat_vect_bb1[gt_tuple_label[0, pic_idx][bb_idx, 0]] = 1.0
feat_vect_bb2[gt_tuple_label[0, pic_idx][bb_idx, 2]] = 1.0
feat_vec_pair = np.hstack((feat_vect_bb1, feat_vect_bb2, computing_extended_features(bb1, bb2)))
features_per_image = np.vstack((features_per_image, feat_vec_pair[np.newaxis, :]))
sub_bboxes_ours_per_image = np.vstack((sub_bboxes_ours_per_image, gt_sub_bboxes[0, pic_idx][bb_idx]))
obj_bboxes_ours_per_image = np.vstack((obj_bboxes_ours_per_image, gt_obj_bboxes[0, pic_idx][bb_idx]))
features_detected_bb.append(features_per_image)
obj_bboxes_ours.append(obj_bboxes_ours_per_image)
sub_bboxes_ours.append(sub_bboxes_ours_per_image)
obj_labels_ours.append(obj_label_per_image)
sub_labels_ours.append(sub_label_per_image)
model_list = [
"models/RWFN_KB_wc_" + str(NUM_ITERATION_TRAIN) + ".ckpt",
"models/RWFN_KB_nc_" + str(NUM_ITERATION_TRAIN) + ".ckpt"]
for model_type in model_list:
model = model_type
model_label = model.split("/")[-1][:-5]
print model.upper()
obj_bboxes_ours_output = []
sub_bboxes_ours_output = []
predicted_predicates_values_tensor = tf.concat(
[isInRelation[predicate].tensor() for predicate in selected_predicates], 1)
saver = tf.train.Saver()
sess = tf.Session(config=config)
saver.restore(sess, model)
rlp_confs_ours = []
rlp_labels_ours = []
error_an = np.array([]).reshape(0, 8)
for pic_idx in range(gt_tuple_label.shape[1]):
if pic_idx % 100 == 0:
print "Eval img", pic_idx
values_of_predicates = sess.run(predicted_predicates_values_tensor,
{pairs_of_objects.tensor: features_detected_bb[pic_idx]})
values_of_predicates = refine_equiv(values_of_predicates, selected_predicates, "max")
values_of_predicates = np.multiply(values_of_predicates, prior_freq)
conf_predicates_per_image = values_of_predicates.flatten('F')
sub_bboxes_ours_output.append(np.tile(sub_bboxes_ours[pic_idx], (len(selected_predicates), 1)))
obj_bboxes_ours_output.append(np.tile(obj_bboxes_ours[pic_idx], (len(selected_predicates), 1)))
# Matlab indices start from 1
label_predicates_per_image = np.hstack(
(np.tile(sub_labels_ours[pic_idx], len(selected_predicates))[:, np.newaxis],
np.repeat(np.array(range(1, len(selected_predicates) + 1)), len(features_detected_bb[pic_idx]))[:,
np.newaxis],
np.tile(obj_labels_ours[pic_idx], len(selected_predicates))[:, np.newaxis]))
rlp_confs_ours.append(conf_predicates_per_image[:, np.newaxis])
rlp_labels_ours.append(label_predicates_per_image)
sess.close()
sio.savemat(cwd + "/Visual-Relationship-Detection-master/results_RWFN/predicate_det_result_" + model_label + ".mat",
{'sub_bboxes_ours': sub_bboxes_ours_output,
'obj_bboxes_ours': obj_bboxes_ours_output,
'rlp_confs_ours': rlp_confs_ours,
'rlp_labels_ours': rlp_labels_ours})