-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtipc_log.txt
447 lines (446 loc) · 23.1 KB
/
tipc_log.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
/home/aistudio/MedicalSeg
2022-06-13 19:21:34 [INFO]
------------Environment Information-------------
platform: Linux-4.15.0-140-generic-x86_64-with-debian-stretch-sid
Python: 3.7.4 (default, Aug 13 2019, 20:35:49) [GCC 7.3.0]
Paddle compiled with cuda: True
NVCC: Cuda compilation tools, release 10.1, V10.1.243
cudnn: 7.6
GPUs used: 1
CUDA_VISIBLE_DEVICES: 0
GPU: ['GPU 0: Tesla V100-SXM2-32GB']
GCC: gcc (Ubuntu 7.5.0-3ubuntu1~16.04) 7.5.0
PaddlePaddle: 2.2.2
OpenCV: 4.1.1
------------------------------------------------
/home/aistudio/MedicalSeg/paddleseg3d/cvlibs/config.py:434: UserWarning: Warning: The data dir now is /home/aistudio/MedicalSeg/data/, you should change the data_root in the global.yml if this directory didn't have enough space
.format(absolute_data_dir))
found unpacked dataset.
loading dataset
loading all case properties
dataset split over! dataset mode: train, keys: ['lung_001' 'lung_003' 'lung_004' 'lung_005' 'lung_009' 'lung_014'
'lung_015' 'lung_016' 'lung_018' 'lung_020' 'lung_022' 'lung_023'
'lung_025' 'lung_026' 'lung_027' 'lung_028' 'lung_029' 'lung_031'
'lung_036' 'lung_037' 'lung_038' 'lung_043' 'lung_044' 'lung_045'
'lung_047' 'lung_049' 'lung_051' 'lung_053' 'lung_054' 'lung_055'
'lung_057' 'lung_058' 'lung_061' 'lung_062' 'lung_064' 'lung_069'
'lung_071' 'lung_073' 'lung_074' 'lung_075' 'lung_078' 'lung_080'
'lung_081' 'lung_083' 'lung_084' 'lung_086' 'lung_092' 'lung_093'
'lung_095' 'lung_096']
W0613 19:21:41.270819 9028 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 10.1
W0613 19:21:41.270879 9028 device_context.cc:465] device: 0, cuDNN Version: 7.6.
found unpacked dataset.
loading dataset
loading all case properties
dataset split over! dataset mode: train, keys: ['lung_001' 'lung_003' 'lung_004' 'lung_005' 'lung_009' 'lung_014'
'lung_015' 'lung_016' 'lung_018' 'lung_020' 'lung_022' 'lung_023'
'lung_025' 'lung_026' 'lung_027' 'lung_028' 'lung_029' 'lung_031'
'lung_036' 'lung_037' 'lung_038' 'lung_043' 'lung_044' 'lung_045'
'lung_047' 'lung_049' 'lung_051' 'lung_053' 'lung_054' 'lung_055'
'lung_057' 'lung_058' 'lung_061' 'lung_062' 'lung_064' 'lung_069'
'lung_071' 'lung_073' 'lung_074' 'lung_075' 'lung_078' 'lung_080'
'lung_081' 'lung_083' 'lung_084' 'lung_086' 'lung_092' 'lung_093'
'lung_095' 'lung_096']
net_numpool: 5
2022-06-13 19:21:48 [INFO]
---------------Config Information---------------
batch_size: 2
data_root: data/
iters: 20
loss:
coef:
- 1
types:
- coef:
- 1.0
ignore_index: 255
losses:
- batch_dice: false
do_bg: false
type: DC_and_CE_loss
plan_path: /home/aistudio/data/preprocessed/Task006_Lung/nnUNetPlansv2.1_plans_3D.pkl
stage: 0
type: MultipleLoss
lr_scheduler:
end_lr: 0
learning_rate: 0.01
power: 0.9
type: PolynomialDecay
model:
plans_path: /home/aistudio/data/preprocessed/Task006_Lung/nnUNetPlansv2.1_plans_3D.pkl
stage: 0
type: NNUNet
optimizer:
momentum: 0.99
type: sgd
use_nesterov: true
weight_decay: 3.0e-05
train_dataset:
cropped_data_dir: /home/aistudio/data/cropped/Task006_Lung
dataset_directory: 0
dataset_root: luna16_lobe51/luna16_lobe51_phase0
decathlon_dir: /home/aistudio/data/Task006_Lung
fold: 0
mode: train
num_batches_per_epoch: 250
output_folder: /home/aistudio/data/dataset_output
plan2d: false
plan3d: true
plans_name: nnUNetPlansv2.1_plans_3D.pkl
preprocessed_dir: /home/aistudio/data/preprocessed/Task006_Lung
raw_data_dir: /home/aistudio/data/Task06_Lung
result_dir: luna16_lobe51/luna16_lobe51_phase1
stage: 0
type: MSDDataset
unpack_data: true
val_dataset:
cropped_data_dir: /home/aistudio/data/cropped/Task006_Lung
dataset_root: luna16_lobe51/luna16_lobe51_phase0
decathlon_dir: /home/aistudio/data/Task006_Lung
fold: 0
mode: val
num_batches_per_epoch: 10
output_folder: /home/aistudio/data/dataset_output
plans_name: nnUNetPlansv2.1_plans_3D.pkl
preprocessed_dir: /home/aistudio/data/preprocessed/Task006_Lung
raw_data_dir: /home/aistudio/data/Task06_Lung
result_dir: luna16_lobe51/luna16_lobe51_phase1
stage: 0
type: MSDDataset
unpack_data: true
------------------------------------------------
found unpacked dataset.
loading dataset
loading all case properties
dataset split over! dataset mode: train, keys: ['lung_001' 'lung_003' 'lung_004' 'lung_005' 'lung_009' 'lung_014'
'lung_015' 'lung_016' 'lung_018' 'lung_020' 'lung_022' 'lung_023'
'lung_025' 'lung_026' 'lung_027' 'lung_028' 'lung_029' 'lung_031'
'lung_036' 'lung_037' 'lung_038' 'lung_043' 'lung_044' 'lung_045'
'lung_047' 'lung_049' 'lung_051' 'lung_053' 'lung_054' 'lung_055'
'lung_057' 'lung_058' 'lung_061' 'lung_062' 'lung_064' 'lung_069'
'lung_071' 'lung_073' 'lung_074' 'lung_075' 'lung_078' 'lung_080'
'lung_081' 'lung_083' 'lung_084' 'lung_086' 'lung_092' 'lung_093'
'lung_095' 'lung_096']
found unpacked dataset.
loading dataset
loading all case properties
dataset split over! dataset mode: train, keys: ['lung_001' 'lung_003' 'lung_004' 'lung_005' 'lung_009' 'lung_014'
'lung_015' 'lung_016' 'lung_018' 'lung_020' 'lung_022' 'lung_023'
'lung_025' 'lung_026' 'lung_027' 'lung_028' 'lung_029' 'lung_031'
'lung_036' 'lung_037' 'lung_038' 'lung_043' 'lung_044' 'lung_045'
'lung_047' 'lung_049' 'lung_051' 'lung_053' 'lung_054' 'lung_055'
'lung_057' 'lung_058' 'lung_061' 'lung_062' 'lung_064' 'lung_069'
'lung_071' 'lung_073' 'lung_074' 'lung_075' 'lung_078' 'lung_080'
'lung_081' 'lung_083' 'lung_084' 'lung_086' 'lung_092' 'lung_093'
'lung_095' 'lung_096']
found unpacked dataset.
loading dataset
loading all case properties
dataset split over! dataset mode: train, keys: ['lung_001' 'lung_003' 'lung_004' 'lung_005' 'lung_009' 'lung_014'
'lung_015' 'lung_016' 'lung_018' 'lung_020' 'lung_022' 'lung_023'
'lung_025' 'lung_026' 'lung_027' 'lung_028' 'lung_029' 'lung_031'
'lung_036' 'lung_037' 'lung_038' 'lung_043' 'lung_044' 'lung_045'
'lung_047' 'lung_049' 'lung_051' 'lung_053' 'lung_054' 'lung_055'
'lung_057' 'lung_058' 'lung_061' 'lung_062' 'lung_064' 'lung_069'
'lung_071' 'lung_073' 'lung_074' 'lung_075' 'lung_078' 'lung_080'
'lung_081' 'lung_083' 'lung_084' 'lung_086' 'lung_092' 'lung_093'
'lung_095' 'lung_096']
found unpacked dataset.
loading dataset
loading all case properties
dataset split over! dataset mode: train, keys: ['lung_001' 'lung_003' 'lung_004' 'lung_005' 'lung_009' 'lung_014'
'lung_015' 'lung_016' 'lung_018' 'lung_020' 'lung_022' 'lung_023'
'lung_025' 'lung_026' 'lung_027' 'lung_028' 'lung_029' 'lung_031'
'lung_036' 'lung_037' 'lung_038' 'lung_043' 'lung_044' 'lung_045'
'lung_047' 'lung_049' 'lung_051' 'lung_053' 'lung_054' 'lung_055'
'lung_057' 'lung_058' 'lung_061' 'lung_062' 'lung_064' 'lung_069'
'lung_071' 'lung_073' 'lung_074' 'lung_075' 'lung_078' 'lung_080'
'lung_081' 'lung_083' 'lung_084' 'lung_086' 'lung_092' 'lung_093'
'lung_095' 'lung_096']
found unpacked dataset.
loading dataset
loading all case properties
dataset split over! dataset mode: train, keys: ['lung_001' 'lung_003' 'lung_004' 'lung_005' 'lung_009' 'lung_014'
'lung_015' 'lung_016' 'lung_018' 'lung_020' 'lung_022' 'lung_023'
'lung_025' 'lung_026' 'lung_027' 'lung_028' 'lung_029' 'lung_031'
'lung_036' 'lung_037' 'lung_038' 'lung_043' 'lung_044' 'lung_045'
'lung_047' 'lung_049' 'lung_051' 'lung_053' 'lung_054' 'lung_055'
'lung_057' 'lung_058' 'lung_061' 'lung_062' 'lung_064' 'lung_069'
'lung_071' 'lung_073' 'lung_074' 'lung_075' 'lung_078' 'lung_080'
'lung_081' 'lung_083' 'lung_084' 'lung_086' 'lung_092' 'lung_093'
'lung_095' 'lung_096']
<class 'paddle.nn.layer.conv.Conv3D'>'s flops has been counted
Cannot find suitable count function for <class 'paddle.nn.layer.norm.InstanceNorm3D'>. Treat it as zero FLOPs.
<class 'paddle.nn.layer.activation.LeakyReLU'>'s flops has been counted
Cannot find suitable count function for <class 'paddle.fluid.dygraph.container.LayerList'>. Treat it as zero FLOPs.
<class 'paddle.nn.layer.conv.Conv3DTranspose'>'s flops has been counted
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/tensor/creation.py:130: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
if data.dtype == np.object:
Total Flops: 625152883200 Total Params: 30785184
Run successfully with command - nnunet - python3 train.py --config test_tipc/configs/nnunet/nnunet_3d_cascade_stage0.yml --save_interval 20 --seed 100 --num_workers 8 --save_dir=./test_tipc/output/nnunet/norm_gpus_0_autocast_null --iters=20 --batch_size=2 !
/home/aistudio/MedicalSeg/paddleseg3d/cvlibs/config.py:434: UserWarning: Warning: The data dir now is /home/aistudio/MedicalSeg/data/, you should change the data_root in the global.yml if this directory didn't have enough space
.format(absolute_data_dir))
found unpacked dataset.
loading dataset
loading all case properties
dataset split over! dataset mode: train, keys: ['lung_001' 'lung_003' 'lung_004' 'lung_005' 'lung_009' 'lung_014'
'lung_015' 'lung_016' 'lung_018' 'lung_020' 'lung_022' 'lung_023'
'lung_025' 'lung_026' 'lung_027' 'lung_028' 'lung_029' 'lung_031'
'lung_036' 'lung_037' 'lung_038' 'lung_043' 'lung_044' 'lung_045'
'lung_047' 'lung_049' 'lung_051' 'lung_053' 'lung_054' 'lung_055'
'lung_057' 'lung_058' 'lung_061' 'lung_062' 'lung_064' 'lung_069'
'lung_071' 'lung_073' 'lung_074' 'lung_075' 'lung_078' 'lung_080'
'lung_081' 'lung_083' 'lung_084' 'lung_086' 'lung_092' 'lung_093'
'lung_095' 'lung_096']
W0613 19:23:54.512336 9254 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 10.1
W0613 19:23:54.512392 9254 device_context.cc:465] device: 0, cuDNN Version: 7.6.
net_numpool: 5
found unpacked dataset.
loading dataset
loading all case properties
dataset split over! dataset mode: val, keys: ['lung_006' 'lung_010' 'lung_033' 'lung_034' 'lung_041' 'lung_042'
'lung_046' 'lung_048' 'lung_059' 'lung_065' 'lung_066' 'lung_070'
'lung_079']
2022-06-13 19:23:56 [INFO]
---------------Config Information---------------
batch_size: 1
data_root: data/
iters: 25000
loss:
coef:
- 1
types:
- coef:
- 1.0
ignore_index: 255
losses:
- batch_dice: false
do_bg: false
type: DC_and_CE_loss
plan_path: /home/aistudio/data/preprocessed/Task006_Lung/nnUNetPlansv2.1_plans_3D.pkl
stage: 0
type: MultipleLoss
lr_scheduler:
end_lr: 0
learning_rate: 0.01
power: 0.9
type: PolynomialDecay
model:
plans_path: /home/aistudio/data/preprocessed/Task006_Lung/nnUNetPlansv2.1_plans_3D.pkl
stage: 0
type: NNUNet
optimizer:
momentum: 0.99
type: sgd
use_nesterov: true
weight_decay: 3.0e-05
train_dataset:
cropped_data_dir: /home/aistudio/data/cropped/Task006_Lung
dataset_directory: 0
dataset_root: luna16_lobe51/luna16_lobe51_phase0
decathlon_dir: /home/aistudio/data/Task006_Lung
fold: 0
mode: train
num_batches_per_epoch: 250
output_folder: /home/aistudio/data/dataset_output
plan2d: false
plan3d: true
plans_name: nnUNetPlansv2.1_plans_3D.pkl
preprocessed_dir: /home/aistudio/data/preprocessed/Task006_Lung
raw_data_dir: /home/aistudio/data/Task06_Lung
result_dir: luna16_lobe51/luna16_lobe51_phase1
stage: 0
type: MSDDataset
unpack_data: true
val_dataset:
cropped_data_dir: /home/aistudio/data/cropped/Task006_Lung
dataset_root: luna16_lobe51/luna16_lobe51_phase0
decathlon_dir: /home/aistudio/data/Task006_Lung
fold: 0
mode: val
num_batches_per_epoch: 10
output_folder: /home/aistudio/data/dataset_output
plans_name: nnUNetPlansv2.1_plans_3D.pkl
preprocessed_dir: /home/aistudio/data/preprocessed/Task006_Lung
raw_data_dir: /home/aistudio/data/Task06_Lung
result_dir: luna16_lobe51/luna16_lobe51_phase1
stage: 0
type: MSDDataset
unpack_data: true
------------------------------------------------
found unpacked dataset.
loading dataset
loading all case properties
dataset split over! dataset mode: train, keys: ['lung_001' 'lung_003' 'lung_004' 'lung_005' 'lung_009' 'lung_014'
'lung_015' 'lung_016' 'lung_018' 'lung_020' 'lung_022' 'lung_023'
'lung_025' 'lung_026' 'lung_027' 'lung_028' 'lung_029' 'lung_031'
'lung_036' 'lung_037' 'lung_038' 'lung_043' 'lung_044' 'lung_045'
'lung_047' 'lung_049' 'lung_051' 'lung_053' 'lung_054' 'lung_055'
'lung_057' 'lung_058' 'lung_061' 'lung_062' 'lung_064' 'lung_069'
'lung_071' 'lung_073' 'lung_074' 'lung_075' 'lung_078' 'lung_080'
'lung_081' 'lung_083' 'lung_084' 'lung_086' 'lung_092' 'lung_093'
'lung_095' 'lung_096']
found unpacked dataset.
loading dataset
loading all case properties
dataset split over! dataset mode: train, keys: ['lung_001' 'lung_003' 'lung_004' 'lung_005' 'lung_009' 'lung_014'
'lung_015' 'lung_016' 'lung_018' 'lung_020' 'lung_022' 'lung_023'
'lung_025' 'lung_026' 'lung_027' 'lung_028' 'lung_029' 'lung_031'
'lung_036' 'lung_037' 'lung_038' 'lung_043' 'lung_044' 'lung_045'
'lung_047' 'lung_049' 'lung_051' 'lung_053' 'lung_054' 'lung_055'
'lung_057' 'lung_058' 'lung_061' 'lung_062' 'lung_064' 'lung_069'
'lung_071' 'lung_073' 'lung_074' 'lung_075' 'lung_078' 'lung_080'
'lung_081' 'lung_083' 'lung_084' 'lung_086' 'lung_092' 'lung_093'
'lung_095' 'lung_096']
2022-06-13 19:24:07 [INFO] Loading pretrained model from ./test_tipc/output/nnunet/norm_gpus_0_autocast_null/iter_20/model.pdparams
2022-06-13 19:24:07 [INFO] There are 98/98 variables loaded into NNUNet.
2022-06-13 19:24:07 [INFO] Loaded trained params of model successfully
found unpacked dataset.
loading dataset
loading all case properties
dataset split over! dataset mode: train, keys: ['lung_001' 'lung_003' 'lung_004' 'lung_005' 'lung_009' 'lung_014'
'lung_015' 'lung_016' 'lung_018' 'lung_020' 'lung_022' 'lung_023'
'lung_025' 'lung_026' 'lung_027' 'lung_028' 'lung_029' 'lung_031'
'lung_036' 'lung_037' 'lung_038' 'lung_043' 'lung_044' 'lung_045'
'lung_047' 'lung_049' 'lung_051' 'lung_053' 'lung_054' 'lung_055'
'lung_057' 'lung_058' 'lung_061' 'lung_062' 'lung_064' 'lung_069'
'lung_071' 'lung_073' 'lung_074' 'lung_075' 'lung_078' 'lung_080'
'lung_081' 'lung_083' 'lung_084' 'lung_086' 'lung_092' 'lung_093'
'lung_095' 'lung_096']
start evaluating...
val_save_folder/fold_0/validation_raw/lung_006.nii.gz already exists, skip.
val_save_folder/fold_0/validation_raw/lung_010.nii.gz already exists, skip.
val_save_folder/fold_0/validation_raw/lung_033.nii.gz already exists, skip.
val_save_folder/fold_0/validation_raw/lung_034.nii.gz already exists, skip.
val_save_folder/fold_0/validation_raw/lung_041.nii.gz already exists, skip.
val_save_folder/fold_0/validation_raw/lung_042.nii.gz already exists, skip.
val_save_folder/fold_0/validation_raw/lung_046.nii.gz already exists, skip.
val_save_folder/fold_0/validation_raw/lung_048.nii.gz already exists, skip.
val_save_folder/fold_0/validation_raw/lung_059.nii.gz already exists, skip.
val_save_folder/fold_0/validation_raw/lung_065.nii.gz already exists, skip.
val_save_folder/fold_0/validation_raw/lung_066.nii.gz already exists, skip.
val_save_folder/fold_0/validation_raw/lung_070.nii.gz already exists, skip.
val_save_folder/fold_0/validation_raw/lung_079.nii.gz already exists, skip.
/home/aistudio/MedicalSeg/nnunet_tools/evaluator.py:351: RuntimeWarning: Mean of empty slice
all_scores["mean"][label][score] = float(np.nanmean(all_scores["mean"][label][score]))
Foreground vs background
before: 0.0
after: 0.0
Only one class present, no need to do each class separately as this is covered in fg vs bg
done
for which classes:
[]
min_object_sizes
None
done
copy gt from /home/aistudio/data/preprocessed/Task006_Lung/gt_segmentations to val_save_folder/gt_niftis.
Run successfully with command - nnunet - python3 nnunet_tools/nnunet_fold_val.py --config test_tipc/configs/nnunet/nnunet_3d_cascade_stage0.yml --num_workers 8 --model_path=./test_tipc/output/nnunet/norm_gpus_0_autocast_null/iter_20/model.pdparams !
/home/aistudio/MedicalSeg/paddleseg3d/cvlibs/config.py:434: UserWarning: Warning: The data dir now is /home/aistudio/MedicalSeg/data/, you should change the data_root in the global.yml if this directory didn't have enough space
.format(absolute_data_dir))
found unpacked dataset.
loading dataset
loading all case properties
dataset split over! dataset mode: train, keys: ['lung_001' 'lung_003' 'lung_004' 'lung_005' 'lung_009' 'lung_014'
'lung_015' 'lung_016' 'lung_018' 'lung_020' 'lung_022' 'lung_023'
'lung_025' 'lung_026' 'lung_027' 'lung_028' 'lung_029' 'lung_031'
'lung_036' 'lung_037' 'lung_038' 'lung_043' 'lung_044' 'lung_045'
'lung_047' 'lung_049' 'lung_051' 'lung_053' 'lung_054' 'lung_055'
'lung_057' 'lung_058' 'lung_061' 'lung_062' 'lung_064' 'lung_069'
'lung_071' 'lung_073' 'lung_074' 'lung_075' 'lung_078' 'lung_080'
'lung_081' 'lung_083' 'lung_084' 'lung_086' 'lung_092' 'lung_093'
'lung_095' 'lung_096']
W0613 19:25:02.953327 9424 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 10.1
W0613 19:25:02.957360 9424 device_context.cc:465] device: 0, cuDNN Version: 7.6.
found unpacked dataset.
loading dataset
loading all case properties
dataset split over! dataset mode: train, keys: ['lung_001' 'lung_003' 'lung_004' 'lung_005' 'lung_009' 'lung_014'
'lung_015' 'lung_016' 'lung_018' 'lung_020' 'lung_022' 'lung_023'
'lung_025' 'lung_026' 'lung_027' 'lung_028' 'lung_029' 'lung_031'
'lung_036' 'lung_037' 'lung_038' 'lung_043' 'lung_044' 'lung_045'
'lung_047' 'lung_049' 'lung_051' 'lung_053' 'lung_054' 'lung_055'
'lung_057' 'lung_058' 'lung_061' 'lung_062' 'lung_064' 'lung_069'
'lung_071' 'lung_073' 'lung_074' 'lung_075' 'lung_078' 'lung_080'
'lung_081' 'lung_083' 'lung_084' 'lung_086' 'lung_092' 'lung_093'
'lung_095' 'lung_096']
2022-06-13 19:25:08 [INFO] Loaded trained params of model successfully.
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:77: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
return (isinstance(seq, collections.Sequence) and
2022-06-13 19:25:11 [INFO] Model is saved in ./test_tipc/output/nnunet/norm_gpus_0_autocast_null.
Run successfully with command - nnunet - python3 export.py --config test_tipc/configs/nnunet/nnunet_3d_cascade_stage0.yml --without_argmax --with_softmax --model_path=./test_tipc/output/nnunet/norm_gpus_0_autocast_null/iter_20/model.pdparams --save_dir=./test_tipc/output/nnunet/norm_gpus_0_autocast_null!
------------args parse-----------------
infer image list: ['/home/aistudio/data/Task006_Lung/imagesTs/lung_008_0000.nii.gz']
predictor======================
--------------load plan over----------------------
2022-06-13 19:25:15 [INFO] Use GPU
W0613 19:25:16.137565 9505 analysis_predictor.cc:795] The one-time configuration of analysis predictor failed, which may be due to native predictor called first and its configurations taken effect.
--- Running analysis [ir_graph_build_pass]
--- Running analysis [ir_graph_clean_pass]
--- Running analysis [ir_analysis_pass]
--- Running IR pass [is_test_pass]
--- Running IR pass [simplify_with_basic_ops_pass]
--- Running IR pass [conv_affine_channel_fuse_pass]
--- Running IR pass [conv_eltwiseadd_affine_channel_fuse_pass]
--- Running IR pass [conv_bn_fuse_pass]
--- Running IR pass [conv_eltwiseadd_bn_fuse_pass]
--- Running IR pass [embedding_eltwise_layernorm_fuse_pass]
--- Running IR pass [multihead_matmul_fuse_pass_v2]
--- Running IR pass [squeeze2_matmul_fuse_pass]
--- Running IR pass [reshape2_matmul_fuse_pass]
--- Running IR pass [flatten2_matmul_fuse_pass]
--- Running IR pass [map_matmul_v2_to_mul_pass]
--- Running IR pass [map_matmul_v2_to_matmul_pass]
--- Running IR pass [map_matmul_to_mul_pass]
--- Running IR pass [fc_fuse_pass]
--- Running IR pass [fc_elementwise_layernorm_fuse_pass]
--- Running IR pass [conv_elementwise_add_act_fuse_pass]
--- Running IR pass [conv_elementwise_add2_act_fuse_pass]
--- Running IR pass [conv_elementwise_add_fuse_pass]
--- Running IR pass [transpose_flatten_concat_fuse_pass]
--- Running IR pass [runtime_context_cache_pass]
--- Running analysis [ir_params_sync_among_devices_pass]
I0613 19:25:16.313962 9505 ir_params_sync_among_devices_pass.cc:45] Sync params from CPU to GPU
--- Running analysis [adjust_cudnn_workspace_size_pass]
--- Running analysis [inference_op_replace_pass]
--- Running analysis [memory_optimize_pass]
I0613 19:25:16.395953 9505 memory_optimize_pass.cc:216] Cluster name : x size: 4
I0613 19:25:16.395985 9505 memory_optimize_pass.cc:216] Cluster name : leaky_relu_1.tmp_0 size: 128
I0613 19:25:16.395989 9505 memory_optimize_pass.cc:216] Cluster name : leaky_relu_5.tmp_0 size: 512
I0613 19:25:16.395992 9505 memory_optimize_pass.cc:216] Cluster name : conv3d_transpose_5.tmp_0 size: 1280
I0613 19:25:16.395996 9505 memory_optimize_pass.cc:216] Cluster name : leaky_relu_7.tmp_0 size: 1024
I0613 19:25:16.395999 9505 memory_optimize_pass.cc:216] Cluster name : concat_0.tmp_0 size: 2560
I0613 19:25:16.396003 9505 memory_optimize_pass.cc:216] Cluster name : instance_norm_11.tmp_1 size: 4
I0613 19:25:16.396006 9505 memory_optimize_pass.cc:216] Cluster name : leaky_relu_3.tmp_0 size: 256
I0613 19:25:16.396009 9505 memory_optimize_pass.cc:216] Cluster name : leaky_relu_9.tmp_0 size: 1280
I0613 19:25:16.396013 9505 memory_optimize_pass.cc:216] Cluster name : conv3d_37.tmp_1 size: 1280
--- Running analysis [ir_graph_to_program_pass]
I0613 19:25:16.436733 9505 analysis_predictor.cc:714] ======= optimize end =======
I0613 19:25:16.439801 9505 naive_executor.cc:98] --- skip [feed], feed -> x
I0613 19:25:16.441469 9505 naive_executor.cc:98] --- skip [softmax_1.tmp_0], fetch -> fetch
W0613 19:25:34.054422 9505 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 10.1
W0613 19:25:34.058297 9505 device_context.cc:465] device: 0, cuDNN Version: 7.6.
no separate z, order 3
no separate z, order 1
before: {'spacing': array([1.5 , 0.75, 0.75]), 'spacing_transposed': array([1.5 , 0.75, 0.75]), 'data.shape (data is transposed)': (1, 199, 512, 512)}
after: {'spacing': array([2.35358718, 1.48430795, 1.48430795]), 'data.shape (data is resampled)': (1, 127, 259, 259)}
debug: mirroring True mirror_axes (0, 1, 2)
step_size: 0.5
do mirror: True
data shape: (1, 127, 259, 259)
patch size: [ 80 192 160]
steps (x, y, and z): [[0, 24, 47], [0, 67], [0, 50, 99]]
number of tiles: 18
computing Gaussian
done
initializing result array (on GPU)
initializing result_numsamples (on GPU)
copying results to CPU
prediction done
force_separate_z: None interpolation order: 1
separate z: False lowres axis None
no separate z, order 1
sitk save: ./output/lung_008_0000.nii.nii.gz
2022-06-13 19:26:18 [INFO] Finish
infer over!
Run successfully with command - nnunet - python3 nnunet_tools/nnunet_infer.py --stage 0 --plan_path /home/aistudio/data/preprocessed/Task006_Lung/nnUNetPlansv2.1_plans_3D.pkl --with_argmax False --device=gpu --use_trt=False --precision=fp32 --config=./test_tipc/output/nnunet/norm_gpus_0_autocast_null//deploy.yaml --batch_size=1 --image_path=/home/aistudio/data/Task006_Lung/imagesTs/lung_008_0000.nii.gz --benchmark=False > ./test_tipc/output/nnunet/python_infer_gpu_usetrt_False_precision_fp32_batchsize_1.log 2>&1 !