-
Notifications
You must be signed in to change notification settings - Fork 39
/
experiments.conf
147 lines (131 loc) · 3.74 KB
/
experiments.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Word embeddings.
ft_en_300d {
path = ../fasttext/cc.en.300.vec.filtered
size = 300
}
ft_de_300d {
path = ../fasttext/cc.de.300.vec.filtered
size = 300
}
ft_nl_300d {
path = ../fasttext/cc.nl.300.vec.filtered
size = 300
}
ft_es_300d {
path = ../fasttext/cc.es.300.vec.filtered
size = 300
}
base {
ffnn_size = 150
ffnn_depth = 2
filter_widths = [3, 4, 5]
filter_size = 50
char_embedding_size = 8
char_vocab_path = ""
context_embeddings = ${ft_en_300d}
contextualization_size = 200
contextualization_layers = 3
lm_size = 1024
lm_layers = 4
lm_path = ""
# Learning hyperparameters.
max_gradient_norm = 5.0
lstm_dropout_rate = 0.4
lexical_dropout_rate = 0.5
dropout_rate = 0.2
optimizer = adam
learning_rate = 0.001
decay_rate = 0.999
decay_frequency = 100
# Other.
train_path = ""
eval_path = ""
lm_path = ""
test_path = ""
ner_types = []
eval_frequency = 500
report_frequency = 100
log_root = logs
max_step = 40000
}
# Main configuration.
eng_genia = ${base}{
train_path = train_dev.genia.jsonlines
test_path = test.genia.jsonlines
lm_path = bert-model/bert_genia_features.hdf5
ner_types = ["DNA","RNA","protein","cell_line","cell_type"]
char_vocab_path = "char_vocab.eng.genia.txt"
max_step = 80000
}
eng_ace04 = ${base}{
train_path = train.ACE2004.jsonlines
eval_path = dev.ACE2004.jsonlines
lm_path = bert-model/bert_ace2004_features.hdf5
test_path = test.ACE2004.jsonlines
ner_types = ["LOC","WEA","GPE","PER","FAC","ORG","VEH"]
char_vocab_path = "char_vocab.eng.ace2004.txt"
max_step = 40000
}
eng_ace05 = ${base}{
train_path = train.ACE2005.jsonlines
eval_path = dev.ACE2005.jsonlines
lm_path = bert-model/bert_ace2005_features.hdf5
test_path = test.ACE2005.jsonlines
ner_types = ["LOC","WEA","GPE","PER","FAC","ORG","VEH"]
char_vocab_path = "char_vocab.eng.ace2005.txt"
max_step = 100000
}
eng_conll12 = ${base}{
train_path = train.conll12.jsonlines
eval_path = dev.conll12.jsonlines
lm_path = bert-model/bert_conll2012_features.hdf5
test_path = test.conll12.jsonlines
ner_types = ["ORDINAL","LOC","PRODUCT","NORP","WORK_OF_ART","LANGUAGE","GPE","TIME","PERCENT","MONEY","PERSON","CARDINAL","FAC","DATE","ORG","LAW","EVENT","QUANTITY"]
char_vocab_path = "char_vocab.eng.conll12.txt"
flat_ner = true
max_step = 200000
}
eng_conll03 = ${base}{
train_path = train_dev.conll03.jsonlines
lm_path = bert-model/bert_conll03_features.hdf5
test_path = test.conll03.jsonlines
ner_types = ["ORG","MISC","PER","LOC"]
char_vocab_path = "char_vocab.eng.conll03.txt"
flat_ner = true
max_step = 80000
}
deu_conll03 = ${base}{
train_path = train.deu.conll03.corrected.jsonlines
lm_path = bert-model/bert_deu_conll03_features.hdf5
test_path = test.deu.conll03.corrected.jsonlines
ner_types = ["ORG","MISC","PER","LOC"]
char_vocab_path = "char_vocab.deu.conll03.txt"
context_embeddings = ${ft_de_300d}
lm_size = 768
flat_ner = true
max_step = 100000
}
deu_conll03_revised = ${deu_conll03}{
train_path = train_dev.deu.conll03.revised06.jsonlines
test_path = test.deu.conll03.revised06.jsonlines
}
esp_conll02 = ${base}{
train_path = train_dev.esp.conll02.jsonlines
lm_path = bert-model/bert_esp_conll02_features.hdf5
test_path = test.esp.conll02.jsonlines
ner_types = ["ORG","MISC","PER","LOC"]
char_vocab_path = "char_vocab.esp.conll02.txt"
context_embeddings = ${ft_es_300d}
lm_size = 768
flat_ner = true
}
ned_conll02 = ${base}{
train_path = train_dev.ned.conll02.jsonlines
lm_path = bert-model/bert_ned_conll02_features.hdf5
test_path = test.ned.conll02.jsonlines
ner_types = ["ORG","MISC","PER","LOC"]
char_vocab_path = "char_vocab.ned.conll02.txt"
context_embeddings = ${ft_nl_300d}
lm_size = 768
flat_ner = true
}