-
Notifications
You must be signed in to change notification settings - Fork 109
/
Copy pathAdaBelief_tf.py
353 lines (317 loc) · 14.5 KB
/
AdaBelief_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""AdaBeliefOptimizer optimizer."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tabulate import tabulate
from colorama import Fore, Back, Style
class AdaBeliefOptimizer(tf.keras.optimizers.Optimizer):
"""
It implements the AdaBeliefOptimizer proposed by
Juntang Zhuang et al. in [AdaBelief Optimizer: Adapting stepsizes by the belief
in observed gradients](https://arxiv.org/abs/2010.07468).
Example of usage:
```python
from adabelief_tf impoty AdaBeliefOptimizer
opt = AdaBeliefOptimizer(lr=1e-3)
```
Note: `amsgrad` is not described in the original paper. Use it with
caution.
AdaBeliefOptimizer is not a placement of the heuristic warmup, the settings should be
kept if warmup has already been employed and tuned in the baseline method.
You can enable warmup by setting `total_steps` and `warmup_proportion`:
```python
opt = AdaBeliefOptimizer(
lr=1e-3,
total_steps=10000,
warmup_proportion=0.1,
min_lr=1e-5,
)
```
In the above example, the learning rate will increase linearly
from 0 to `lr` in 1000 steps, then decrease linearly from `lr` to `min_lr`
in 9000 steps.
Lookahead, proposed by Michael R. Zhang et.al in the paper
[Lookahead Optimizer: k steps forward, 1 step back]
(https://arxiv.org/abs/1907.08610v1), can be integrated with AdaBeliefOptimizer,
which is announced by Less Wright and the new combined optimizer can also
be called "Ranger". The mechanism can be enabled by using the lookahead
wrapper. For example:
```python
adabelief = AdaBeliefOptimizer()
ranger = tfa.optimizers.Lookahead(adabelief, sync_period=6, slow_step_size=0.5)
```
Example of serialization:
```python
optimizer = AdaBeliefOptimizer(learning_rate=lr_scheduler, weight_decay=wd_scheduler)
config = tf.keras.optimizers.serialize(optimizer)
new_optimizer = tf.keras.optimizers.deserialize(config, custom_objects={"AdaBeliefOptimizer": AdaBeliefOptimizer})
```
"""
def __init__(
self,
learning_rate=0.001,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-14,
weight_decay=0.0,
rectify=True,
amsgrad=False,
sma_threshold=5.0,
total_steps=0,
warmup_proportion=0.1,
min_lr=0.0,
name="AdaBeliefOptimizer",
**kwargs):
r"""Construct a new AdaBelief optimizer.
Args:
learning_rate: A `Tensor` or a floating point value, or a schedule
that is a `tf.keras.optimizers.schedules.LearningRateSchedule`.
The learning rate.
beta_1: A float value or a constant float tensor.
The exponential decay rate for the 1st moment estimates.
beta_2: A float value or a constant float tensor.
The exponential decay rate for the 2nd moment estimates.
epsilon: A small constant for numerical stability.
weight_decay: A `Tensor` or a floating point value, or a schedule
that is a `tf.keras.optimizers.schedules.LearningRateSchedule`.
Weight decay for each parameter.
rectify: boolean. Whether to enable rectification as in RectifiedAdam
amsgrad: boolean. Whether to apply AMSGrad variant of this
algorithm from the paper "On the Convergence of Adam and
beyond".
sma_threshold. A float value.
The threshold for simple mean average.
total_steps: An integer. Total number of training steps.
Enable warmup by setting a positive value.
warmup_proportion: A floating point value.
The proportion of increasing steps.
min_lr: A floating point value. Minimum learning rate after warmup.
name: Optional name for the operations created when applying
gradients. Defaults to "AdaBeliefOptimizer".
**kwargs: keyword arguments. Allowed to be {`clipnorm`,
`clipvalue`, `lr`, `decay`}. `clipnorm` is clip gradients
by norm; `clipvalue` is clip gradients by value, `decay` is
included for backward compatibility to allow time inverse
decay of learning rate. `lr` is included for backward
compatibility, recommended to use `learning_rate` instead.
"""
super().__init__(name, **kwargs)
# ------------------------------------------------------------------------------
# Print modifications to default arguments
print(Fore.RED + 'Please check your arguments if you have upgraded adabelief-tf from version 0.0.1.')
print(Fore.RED + 'Modifications to default arguments:')
default_table = tabulate([
['adabelief-tf=0.0.1','1e-8','Not supported','Not supported'],
['Current version (0.1.0)','1e-14','supported','default: True']],
headers=['eps','weight_decouple','rectify'])
print(Fore.RED + default_table)
print(Fore.RED +'For a complete table of recommended hyperparameters, see')
print(Fore.RED + 'https://github.com/juntang-zhuang/Adabelief-Optimizer')
print(Style.RESET_ALL)
# ------------------------------------------------------------------------------
self._set_hyper("learning_rate", kwargs.get("lr", learning_rate))
self._set_hyper("beta_1", beta_1)
self._set_hyper("beta_2", beta_2)
self._set_hyper("decay", self._initial_decay)
self._set_hyper("weight_decay", weight_decay)
self._set_hyper("sma_threshold", sma_threshold)
self._set_hyper("total_steps", int(total_steps))
self._set_hyper("warmup_proportion", warmup_proportion)
self._set_hyper("min_lr", min_lr)
self.epsilon = epsilon or tf.keras.backend.epsilon()
self.amsgrad = amsgrad
self.rectify = rectify
self._has_weight_decay = weight_decay != 0.0
self._initial_total_steps = total_steps
def _create_slots(self, var_list):
for var in var_list:
self.add_slot(var, "m")
for var in var_list:
self.add_slot(var, "v")
for var in var_list:
self.add_slot(var, "grad_dif")
if self.amsgrad:
for var in var_list:
self.add_slot(var, "vhat")
def set_weights(self, weights):
params = self.weights
num_vars = int((len(params) - 1) / 2)
if len(weights) == 4 * num_vars + 1:
weights = weights[: len(params)]
super().set_weights(weights)
def _decayed_wd(self, var_dtype):
wd_t = self._get_hyper("weight_decay", var_dtype)
if isinstance(wd_t, tf.keras.optimizers.schedules.LearningRateSchedule):
wd_t = tf.cast(wd_t(self.iterations), var_dtype)
return wd_t
def _resource_apply_dense(self, grad, var):
var_dtype = var.dtype.base_dtype
lr_t = self._decayed_lr(var_dtype)
wd_t = self._decayed_wd(var_dtype)
m = self.get_slot(var, "m")
v = self.get_slot(var, "v")
beta_1_t = self._get_hyper("beta_1", var_dtype)
beta_2_t = self._get_hyper("beta_2", var_dtype)
epsilon_t = tf.convert_to_tensor(self.epsilon, var_dtype)
local_step = tf.cast(self.iterations + 1, var_dtype)
beta_1_power = tf.math.pow(beta_1_t, local_step)
beta_2_power = tf.math.pow(beta_2_t, local_step)
if self._initial_total_steps > 0:
total_steps = self._get_hyper("total_steps", var_dtype)
warmup_steps = total_steps * self._get_hyper("warmup_proportion", var_dtype)
min_lr = self._get_hyper("min_lr", var_dtype)
decay_steps = tf.maximum(total_steps - warmup_steps, 1)
decay_rate = (min_lr - lr_t) / decay_steps
lr_t = tf.where(
local_step <= warmup_steps,
lr_t * (local_step / warmup_steps),
lr_t + decay_rate * tf.minimum(local_step - warmup_steps, decay_steps),
)
sma_inf = 2.0 / (1.0 - beta_2_t) - 1.0
sma_t = sma_inf - 2.0 * local_step * beta_2_power / (1.0 - beta_2_power)
m_t = m.assign(
beta_1_t * m + (1.0 - beta_1_t) * grad, use_locking=self._use_locking
)
m_corr_t = m_t / (1.0 - beta_1_power)
grad_dif = self.get_slot(var,'grad_dif')
grad_dif.assign( grad - m_t )
v_t = v.assign(
beta_2_t * v + (1.0 - beta_2_t) * tf.math.square(grad - m_t) + epsilon_t,
use_locking=self._use_locking,
)
if self.amsgrad:
vhat = self.get_slot(var, "vhat")
vhat_t = vhat.assign(tf.maximum(vhat, v_t), use_locking=self._use_locking)
v_corr_t = tf.math.sqrt(vhat_t / (1.0 - beta_2_power))
else:
vhat_t = None
v_corr_t = tf.math.sqrt(v_t / (1.0 - beta_2_power))
r_t = tf.math.sqrt(
(sma_t - 4.0)
/ (sma_inf - 4.0)
* (sma_t - 2.0)
/ (sma_inf - 2.0)
* sma_inf
/ sma_t
)
if self.rectify:
sma_threshold = self._get_hyper("sma_threshold", var_dtype)
var_t = tf.where(
sma_t >= sma_threshold,
r_t * m_corr_t / (v_corr_t + epsilon_t),
m_corr_t,
)
else:
var_t = m_corr_t / (v_corr_t + epsilon_t)
if self._has_weight_decay:
var_t += wd_t * var
var_update = var.assign_sub(lr_t * var_t, use_locking=self._use_locking)
updates = [var_update, m_t, v_t]
if self.amsgrad:
updates.append(vhat_t)
return tf.group(*updates)
def _resource_apply_sparse(self, grad, var, indices):
var_dtype = var.dtype.base_dtype
lr_t = self._decayed_lr(var_dtype)
wd_t = self._decayed_wd(var_dtype)
beta_1_t = self._get_hyper("beta_1", var_dtype)
beta_2_t = self._get_hyper("beta_2", var_dtype)
epsilon_t = tf.convert_to_tensor(self.epsilon, var_dtype)
local_step = tf.cast(self.iterations + 1, var_dtype)
beta_1_power = tf.math.pow(beta_1_t, local_step)
beta_2_power = tf.math.pow(beta_2_t, local_step)
if self._initial_total_steps > 0:
total_steps = self._get_hyper("total_steps", var_dtype)
warmup_steps = total_steps * self._get_hyper("warmup_proportion", var_dtype)
min_lr = self._get_hyper("min_lr", var_dtype)
decay_steps = tf.maximum(total_steps - warmup_steps, 1)
decay_rate = (min_lr - lr_t) / decay_steps
lr_t = tf.where(
local_step <= warmup_steps,
lr_t * (local_step / warmup_steps),
lr_t + decay_rate * tf.minimum(local_step - warmup_steps, decay_steps),
)
sma_inf = 2.0 / (1.0 - beta_2_t) - 1.0
sma_t = sma_inf - 2.0 * local_step * beta_2_power / (1.0 - beta_2_power)
m = self.get_slot(var, "m")
m_scaled_g_values = grad * (1 - beta_1_t)
m_t = m.assign(m * beta_1_t, use_locking=self._use_locking)
m_t = self._resource_scatter_add(m, indices, m_scaled_g_values)
m_corr_t = m_t / (1.0 - beta_1_power)
grad_dif = self.get_slot(var,'grad_dif')
grad_dif.assign(m_t)
grad_dif = self._resource_scatter_add(grad_dif, indices, -1.0 * grad)
v = self.get_slot(var, "v")
m_t_indices = tf.gather(m_t, indices)
v_scaled_g_values = tf.math.square(grad - m_t_indices) * (1 - beta_2_t)
v_t = v.assign(v * beta_2_t + epsilon_t, use_locking=self._use_locking)
v_t = self._resource_scatter_add(v, indices, v_scaled_g_values)
if self.amsgrad:
vhat = self.get_slot(var, "vhat")
vhat_t = vhat.assign(tf.maximum(vhat, v_t), use_locking=self._use_locking)
v_corr_t = tf.math.sqrt(vhat_t / (1.0 - beta_2_power))
else:
vhat_t = None
v_corr_t = tf.math.sqrt(v_t / (1.0 - beta_2_power))
r_t = tf.math.sqrt(
(sma_t - 4.0)
/ (sma_inf - 4.0)
* (sma_t - 2.0)
/ (sma_inf - 2.0)
* sma_inf
/ sma_t
)
if self.rectify:
sma_threshold = self._get_hyper("sma_threshold", var_dtype)
var_t = tf.where(
sma_t >= sma_threshold,
r_t * m_corr_t / (v_corr_t + epsilon_t),
m_corr_t,
)
else:
var_t = m_corr_t / (v_corr_t + epsilon_t)
if self._has_weight_decay:
var_t += wd_t * var
var_update = self._resource_scatter_add(
var, indices, tf.gather(-lr_t * var_t, indices)
)
updates = [var_update, m_t, v_t]
if self.amsgrad:
updates.append(vhat_t)
return tf.group(*updates)
def get_config(self):
config = super().get_config()
config.update(
{
"learning_rate": self._serialize_hyperparameter("learning_rate"),
"beta_1": self._serialize_hyperparameter("beta_1"),
"beta_2": self._serialize_hyperparameter("beta_2"),
"decay": self._serialize_hyperparameter("decay"),
"weight_decay": self._serialize_hyperparameter("weight_decay"),
"sma_threshold": self._serialize_hyperparameter("sma_threshold"),
"epsilon": self.epsilon,
"amsgrad": self.amsgrad,
"rectify": self.rectify,
"total_steps": self._serialize_hyperparameter("total_steps"),
"warmup_proportion": self._serialize_hyperparameter(
"warmup_proportion"
),
"min_lr": self._serialize_hyperparameter("min_lr"),
}
)
return config